ﻻ يوجد ملخص باللغة العربية
Using a recursive approach, we obtain a simple exact expression for the L^2-distance from the limit in Regniers (1989) classical limit theorem for the number of key comparisons required by QuickSort. A previous study by Fill and Janson (2002) using a similar approach found that the d_2-distance is of order between n^{-1} log n and n^{-1/2}, and another by Neininger and Ruschendorf (2002) found that the Zolotarev zeta_3-distance is of exact order n^{-1} log n. Our expression reveals that the L^2-distance is asymptotically equivalent to (2 n^{-1} ln n)^{1/2}.
In a continuous-time setting, Fill (2010) proved, for a large class of probabilistic sources, that the number of symbol comparisons used by QuickSort, when centered by subtracting the mean and scaled by dividing by time, has a limiting distribution,
As proved by Regnier and Rosler, the number of key comparisons required by the randomized sorting algorithm QuickSort to sort a list of $n$ distinct items (keys) satisfies a global distributional limit theorem. Fill and Janson proved results about th
Most previous studies of the sorting algorithm QuickSort have used the number of key comparisons as a measure of the cost of executing the algorithm. Here we suppose that the n independent and identically distributed (i.i.d.) keys are each represente
The analyses of many algorithms and data structures (such as digital search trees) for searching and sorting are based on the representation of the keys involved as bit strings and so count the number of bit comparisons. On the other hand, the standa
We give upper and lower asymptotic bounds for the left tail and for the right tail of the continuous limiting QuickSort density f that are nearly matching in each tail. The bounds strengthen results from a paper of Svante Janson (2015) concerning the