ﻻ يوجد ملخص باللغة العربية
We formulate, solve computationally and study experimentally the problem of collecting solar energy in three dimensions(1-5). We demonstrate that absorbers and reflectors can be combined in the absence of sun tracking to build three-dimensional photovoltaic (3DPV) structures that can generate measured energy densities (energy per base area, kWh/m2) higher by a factor of 2-20 than stationary flat PV panels, versus an increase by a factor of 1.3-1.8 achieved with a flat panel using dual-axis sun tracking(6). The increased energy density is countered by a higher solar cell area per generated energy for 3DPV compared to flat panel design (by a factor of 1.5-4 in our conditions), but accompanied by a vast range of improvements. 3DPV structures are steadier sources of solar energy generation at all latitudes: they can double the number of peak power generation hours and dramatically reduce the seasonal, latitude and weather variations of solar energy generation compared to a flat panel design. Self-supporting 3D shapes can create new schemes for PV installation and the increased energy density can facilitate the use of cheaper thin film materials in area-limited applications. Our findings suggest that harnessing solar energy in three dimensions can open new avenues towards Terawatt-scale generation.
Snowflake growth provides us with a fascinating example of spontaneous pattern formation in nature. Attempts to understand this phenomenon have led to important insights in non-equilibrium dynamics observed in various active scientific fields, rangin
Numerical solution of reaction-diffusion equations in three dimensions is one of the most challenging applied mathematical problems. Since these simulations are very time consuming, any ideas and strategies aiming at the reduction of CPU time are imp
A model for the simulation of orientational effects in straight and bent periodic atomic structures is presented. The continuum potential approximation has been adopted.The model allows the manipulation of particle trajectories by means of straight a
Fluid motion driven by thermal effects, such as that due to buoyancy in differentially heated three-dimensional (3D) enclosures, arise in several natural settings and engineering applications. It is represented by the solutions of the Navier-Stokes e
We consider a system of anisotropic plates in the three-dimensional continuum, interacting via purely hard core interactions. We assume that the particles have a finite number of allowed orientations. In a suitable range of densities, we prove the ex