ترغب بنشر مسار تعليمي؟ اضغط هنا

Snowflake growth in three dimensions using phase field modelling

342   0   0.0 ( 0 )
 نشر من قبل Gilles Demange
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Snowflake growth provides us with a fascinating example of spontaneous pattern formation in nature. Attempts to understand this phenomenon have led to important insights in non-equilibrium dynamics observed in various active scientific fields, ranging from pattern formation in physical and chemical systems, to self-assembly problems in biology. Yet, very few models currently succeed in reproducing the diversity of snowflake forms in three dimensions, and the link between model parameters and thermodynamic quantities is not established. Here, we report a modified phase field model that describes the subtlety of the ice vapour phase transition, through anisotropic water molecules attachment and condensation, surface diffusion, and strong anisotropic surface tension, that guarantee the anisotropy, faceting and dendritic growth of snowflakes. We demonstrate that this model reproduces the growth dynamics of the most challenging morphologies of snowflakes from the Nakaya diagram. We find that the growth dynamics of snow crystals matches the selection theory, consistently with previous experimental observations.



قيم البحث

اقرأ أيضاً

We formulate, solve computationally and study experimentally the problem of collecting solar energy in three dimensions(1-5). We demonstrate that absorbers and reflectors can be combined in the absence of sun tracking to build three-dimensional photo voltaic (3DPV) structures that can generate measured energy densities (energy per base area, kWh/m2) higher by a factor of 2-20 than stationary flat PV panels, versus an increase by a factor of 1.3-1.8 achieved with a flat panel using dual-axis sun tracking(6). The increased energy density is countered by a higher solar cell area per generated energy for 3DPV compared to flat panel design (by a factor of 1.5-4 in our conditions), but accompanied by a vast range of improvements. 3DPV structures are steadier sources of solar energy generation at all latitudes: they can double the number of peak power generation hours and dramatically reduce the seasonal, latitude and weather variations of solar energy generation compared to a flat panel design. Self-supporting 3D shapes can create new schemes for PV installation and the increased energy density can facilitate the use of cheaper thin film materials in area-limited applications. Our findings suggest that harnessing solar energy in three dimensions can open new avenues towards Terawatt-scale generation.
Numerical solution of reaction-diffusion equations in three dimensions is one of the most challenging applied mathematical problems. Since these simulations are very time consuming, any ideas and strategies aiming at the reduction of CPU time are imp ortant topics of research. A general and robust idea is the parallelization of source codes/programs. Recently, the technological development of graphics hardware created a possibility to use desktop video cards to solve numerically intensive problems. We present a powerful parallel computing framework to solve reaction-diffusion equations numerically using the Graphics Processing Units (GPUs) with CUDA. Four different reaction-diffusion problems, (i) diffusion of chemically inert compound, (ii) Turing pattern formation, (iii) phase separation in the wake of a moving diffusion front and (iv) air pollution dispersion were solved, and additionally both the Shared method and the Moving Tiles method were tested. Our results show that parallel implementation achieves typical acceleration values in the order of 5-40 times compared to CPU using a single-threaded implementation on a 2.8 GHz desktop computer.
We consider the phase diagram of self-avoiding walks (SAW) on the simple cubic lattice subject to surface and bulk interactions, modeling an adsorbing surface and variable solvent quality for a polymer in dilute solution, respectively. We simulate SA Ws at specific interaction strengths to focus on locating certain transitions and their critical behavior. By collating these new results with previous results we sketch the complete phase diagram and show how the adsorption transition is affected by changing the bulk interaction strength. This expands on recent work considering how adsorption is affected by solvent quality. We demonstrate that changes in the adsorption crossover exponent coincide with phase boundaries.
We consider a system of anisotropic plates in the three-dimensional continuum, interacting via purely hard core interactions. We assume that the particles have a finite number of allowed orientations. In a suitable range of densities, we prove the ex istence of a uni-axial nematic phase, characterized by long range orientational order (the minor axes are aligned parallel to each other, while the major axes are not) and no translational order. The proof is based on a coarse graining procedure, which allows us to map the plate model into a contour model, and in a rigorous control of the resulting contour theory, via Pirogov-Sinai methods.
Fluid-structure simulations of slender inextensible filaments in a viscous fluid are often plagued by numerical stiffness. Recent coarse-graining studies have reduced the computational requirements of simulating such systems, though have thus far bee n limited to the motion of planar filaments. In this work we extend such frameworks to filament motion in three dimensions, identifying and circumventing coordinate-system singularities introduced by filament parameterisation via repeated changes of basis. The resulting methodology enables efficient and rapid study of the motion of flexible filaments in three dimensions, and is readily extensible to a wide range of problems, including filament motion in confined geometries, large-scale active matter simulations, and the motility of mammalian spermatozoa.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا