ﻻ يوجد ملخص باللغة العربية
A model for the simulation of orientational effects in straight and bent periodic atomic structures is presented. The continuum potential approximation has been adopted.The model allows the manipulation of particle trajectories by means of straight and bent crystals and the scaling of the cross sections of hadronic and electromagnetic processes for channeled particles. Based on such a model, an extension of the Geant4 toolkit has been developed. The code has been validated against data from channeling experiments carried out at CERN.
A channelled particle, which moves in a crystal, alongside with electromagnetic interaction also experiences weak interaction with electrons and nuclei, as well as strong interaction with nuclei. Measurements of polarization vector and angular distri
When a charged particle moves through a plasma at a speed much higher than the thermal velocity of the plasma, it is subjected to the force of the electrostatic field induced in the plasma by itself and loses its energy. This process is well-known as
Spin precession of channelled particles in bent crystals at the LHC gives unique possibility for measurements as electric and magnetic moments of charm, beauty and strange charged baryons so and constants determining CP ($T_{odd}, P_{odd}$) violation
A symplectic, symmetric, second-order scheme is constructed for particle evolution in a time-dependent field with a fixed spatial step. The scheme is implemented in one space dimension and tested, showing excellent adequacy to experiment analysis.
The quest to understand the fundamental building blocks of nature and their interactions is one of the oldest and most ambitious of human scientific endeavors. Facilities such as CERNs Large Hadron Collider (LHC) represent a huge step forward in this