ﻻ يوجد ملخص باللغة العربية
Numerical solution of reaction-diffusion equations in three dimensions is one of the most challenging applied mathematical problems. Since these simulations are very time consuming, any ideas and strategies aiming at the reduction of CPU time are important topics of research. A general and robust idea is the parallelization of source codes/programs. Recently, the technological development of graphics hardware created a possibility to use desktop video cards to solve numerically intensive problems. We present a powerful parallel computing framework to solve reaction-diffusion equations numerically using the Graphics Processing Units (GPUs) with CUDA. Four different reaction-diffusion problems, (i) diffusion of chemically inert compound, (ii) Turing pattern formation, (iii) phase separation in the wake of a moving diffusion front and (iv) air pollution dispersion were solved, and additionally both the Shared method and the Moving Tiles method were tested. Our results show that parallel implementation achieves typical acceleration values in the order of 5-40 times compared to CPU using a single-threaded implementation on a 2.8 GHz desktop computer.
Snowflake growth provides us with a fascinating example of spontaneous pattern formation in nature. Attempts to understand this phenomenon have led to important insights in non-equilibrium dynamics observed in various active scientific fields, rangin
We study the decay process for the reaction-diffusion process of three species on the small-world network. The decay process is manipulated from the deterministic rate equation of three species in the reaction-diffusion system. The particle density a
CELES is a freely available MATLAB toolbox to simulate light scattering by many spherical particles. Aiming at high computational performance, CELES leverages block-diagonal preconditioning, a lookup-table approach to evaluate costly functions and ma
We formulate, solve computationally and study experimentally the problem of collecting solar energy in three dimensions(1-5). We demonstrate that absorbers and reflectors can be combined in the absence of sun tracking to build three-dimensional photo
The Graphics Processing Unit (GPU) is a powerful tool for parallel computing. In the past years the performance and capabilities of GPUs have increased, and the Compute Unified Device Architecture (CUDA) - a parallel computing architecture - has been