ﻻ يوجد ملخص باللغة العربية
We consider a system of anisotropic plates in the three-dimensional continuum, interacting via purely hard core interactions. We assume that the particles have a finite number of allowed orientations. In a suitable range of densities, we prove the existence of a uni-axial nematic phase, characterized by long range orientational order (the minor axes are aligned parallel to each other, while the major axes are not) and no translational order. The proof is based on a coarse graining procedure, which allows us to map the plate model into a contour model, and in a rigorous control of the resulting contour theory, via Pirogov-Sinai methods.
We consider a monomer-dimer system with a strong attractive dimer-dimer interaction that favors alignment. In 1979, Heilmann and Lieb conjectured that this model should exhibit a nematic liquid crystal phase, in which the dimers are mostly aligned, b
Using overdamped Brownian dynamics simulations we investigate the isotropic-nematic (IN) transition of self-propelled rods in three spatial dimensions. For two well-known model systems (Gay-Berne potential and hard spherocylinders) we find that turni
In [BEI] we introduced a Levy process on a hierarchical lattice which is four dimensional, in the sense that the Greens function for the process equals 1/x^2. If the process is modified so as to be weakly self-repelling, it was shown that at the crit
In this paper, we consider nearest-neighbor oriented percolation with independent Bernoulli bond-occupation probability on the $d$-dimensional body-centered cubic (BCC) lattice $mathbb{L}^d$ and the set of non-negative integers $mathbb{Z}_+$. Thanks
We consider the isotropic perimeter generating functions of three-choice, imperfect, and 1-punctured staircase polygons, whose 8th order linear Fuchsian ODEs are previously known. We derive simple relationships between the three generating functions,