ترغب بنشر مسار تعليمي؟ اضغط هنا

يمكن أن تسترجع إمكانات المطابقة الدلالية لاسترجاع المعلومات العصبية مشاكل المرادفات والبوليزيميمي من الأساليب الرمزية.ومع ذلك، فإن التمثيلات الكثيفة النماذج العصبية أكثر ملاءمة لإعادة الترتيب، بسبب عدم كفاءةها.تمثيلات متفرق، إما في شكل رمزي أو كامن، أكثر كفاءة مع مؤشر مقلوب.أخذ مزايا التمثيلات المتناثرة والكثيفة، نقترح مخطط تمثيل ثنائي الأبعاد للغاية (UHD) مجهز بمرضية يمكن السيطرة عليها مباشرة.سعة UHD الكبيرة والحد الأدنى من الضوضاء والتدخل بين الأبعاد تسمح بالتمثيل الثنائي، والتي تعتبر فعالة للغاية للتخزين والبحث.المقترح أيضا طريقة دلامية، حيث يتم اختيار / دمج الأشرطة من طبقات متعددة من بيرت / دمجها لتمثيل الجوانب اللغوية المتنوعة.نقوم باختبار نماذجنا باستخدام سيارة MS MARCO و TREC، والتي تبين أن نماذجنا تفوقت على نماذج غير متفرقة أخرى.
يعيد نظام استرجاع النص للتعلم اللغوي مواد القراءة في مستوى الصعوبة المناسب للمستخدم.يحافظ النظام عادة على نموذج متعلم على معرفة المفردات للمستخدم، وتحدد النصوص التي تناسب النموذج.مع زيادة الكفاءة في اللغة للمستخدم، تكون التحديثات النموذجية ضرورية لاس ترداد النصوص مع التعقيد المعجمي المقابل.نحن نتحقق في نموذج متعلم مفتوح يتيح تعديل المستخدم لمحتواه، وتقييم فعاليته فيما يتعلق بمبلغ جهد تحديث المستخدم.قارنا هذا النموذج مع النهج المتدرج، حيث يقوم النظام بإرجاع النصوص في الصف الأمثل.عندما يقوم المستخدم بإجراء ما لا يقل عن نصف التحديثات المتوقعة لنموذج المتعلم المفتوح، تظهر نتائج المحاكاة أنه يتفوق على النهج المتدرج في استرجاع النصوص التي تناسب تفضيلات المستخدم كثافة كلمة جديدة.
تقوم المشفر المزدح المجرقة بإجراء استرجاع من خلال ترميز المستندات والاستعلامات في متجهات كثيفة منخفضة الأبعاد، حيث سجل كل وثيقة عن طريق المنتج الداخلي مع الاستعلام.نحن نبحث في قدرة هذه الهندسة المعمارية بالنسبة إلى نماذج كيس من الكلمات المتفرقة والشب كات العصبية الاهتمام.باستخدام كل من التحليلات النظرية والتجريبية، نقوم بإنشاء اتصالات بين بعد ترميز، الهامش بين الذهب والوثائق ذات المرتبة الأدنى، وطول الوثيقة، مما يشير إلى حد قيود في سعة الترميزات ذات الطول الثابت لدعم استرجاع الدقة الدقيقة للوثائق الطويلة.بناء على هذه الأفكار، نقترح نموذجا عصبا بسيطا يجمع بين كفاءة الترميز المزدوج مع بعض التعبير عن هياكل التعبير الأكثر تكلفة، واستكشاف الهجينة الكثيفة المتنارية للاستفادة من دقة الاسترجاع المتناقضة.تتفوق هذه النماذج بدائل قوية في استرجاع واسع النطاق.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا