ترغب بنشر مسار تعليمي؟ اضغط هنا

يعد توليد الاستجابة الشخصية ضروريا لمزيد من المحادثات التي يشبها الإنسان. ومع ذلك، وكيفية نموذج معلومات تخصيص المستخدم مع عدم وجود أوصاف شخص مستخدم صريح أو التركيبة السكانية لا يزال قيد التحقيق فيها. لمعالجة مشكلة بيانات Sparsity للبيانات والعدد الها ئل من المستخدمين، نستخدم عامل تخصيص Tensor لنموذج معلومات تخصيص المستخدمين مع تاريخ النشر. على وجه التحديد، نقدم تضمين الاستجابة الشخصية لجميع أزواج المستخدمين على المستخدمين وتشكيلها في موتر ثلاثي الحجم، متحللة من تحلل tucker. يتم تغذية تضمين الاستجابة الشخصية إما لمعرفة وحدة فك ترميز نموذج SEQ2SEQ القائمة على LSTM أو نموذج لغة محول للمساعدة في توليد المزيد من الردود الشخصية. لتقييم مدى تخصيص الاستجابات التي تم إنشاؤها، فإننا نقترح مزيدا من المرتبة المائية المستندة إلى الترتيب الواحد لكل من الزيارات @ k والتي تقيس أكثر من المرجح أن تأتي الردود التي تم إنشاؤها من المستخدمين المقابلين. تظهر النتائج على مجموعة بيانات المحادثة على نطاق واسع أن النماذج التي تعتمد على عامل توزيع العمال المقترح لدينا تولد استجابات أكثر تخصيصا وأكثر جودة مقارنة مع خطوط الأساس.
الجيل السردي هو مهمة NLP مفتوحة العضوية التي يولد فيها نموذج قصة إعطاء موجه.المهمة تشبه توليد الاستجابة العصبية لل Chatbots؛ومع ذلك، غالبا ما لا يتم تطبيق الابتكارات في توليد الاستجابة على جيل سرد، على الرغم من التشابه بين هذه المهام.نحن نهدف إلى سد هذه الفجوة من خلال تطبيق وتقييم التقدم في طرق فك تشفير جيل الاستجابة العصبية إلى توليد السرد العصبي.على وجه الخصوص، نحن نوظف GPT-2 وأداء الأزمة عبر عتبات أخذ العينات النواة ومثبتة تنوعا فرطيا مثبطا --- على وجه التحديد، والحد الأقصى للمعلومات المتبادلة - - تحليل النتائج على معايير متعددة مع التقييم التلقائي والإنساني.نجد أن (1) أخذ عينات نواة أفضل عموما مع عتبات بين 0.7 و 0.9؛(2) الحد الأقصى لهدف المعلومات المتبادلة يمكن أن يحسن نوعية القصص التي تم إنشاؤها؛و (3) لا ترتبط مقاييس التلقائية المنشأة بشكل جيد مع الأحكام الإنسانية لجودة السرد على أي متري نوعي.
إن فهم مشاعر المتكلم وإنتاج الاستجابات المناسبة مع اتصال العاطفة هو مهارة متتالية رئيسية لأنظمة الحوار التعاطفية.في هذه الورقة، نقترح تقنية بسيطة تسمى فك الترميز العاطفي لتوليد الاستجابة المتعاطفة.يمكن أن تتضمن طريقةنا بفعالية إشارات العاطفة أثناء كل خطوة فك التشفير، ويمكن تقديمها بالإضافة إلى ذلك بتشمس العاطفة المزدوجة الإضافية، والتي تتعلم تضمين منفصل للمتكلم والمستمع بالنظر إلى قاعدة العاطفة للحوار.تشير الدراسات التجريبية الواسعة إلى أن نماذجنا تعتبر أكثر تعاطفا عن طريق التقييمات البشرية، بالمقارنة مع العديد من الأساليب الرئيسية القوية للاستجابة التعاطفية.
في توليد استجابة الحوار مفتوح المجال، يمكن أن يستمر سياق الحوار مع ردود متنوعة، وينبغي أن تتخذ طرازات الحوار علاقات واحدة إلى كثيرة.في هذا العمل، نقوم أولا بتحليل الهدف التدريبي لنماذج الحوار من وجهة نظر اختلاف Kullback-Leibler (KLD) وإظهار أن الفجوة بين توزيع الاحتمالات العالمي الحقيقي وتوزيع احتمالية البيانات المرجعية الفردية يمنع النموذج من تعلم الواحدإلى العديد من العلاقات بكفاءة.ثم نستكشف النهج للتدريب متعدد الإشارة في جوانبين.البيانات الحكيمة، ونحن نولد إشارات زائفة متنوعة من نموذج قوي مسبقا لبناء بيانات متعددة المرجعين توفر تقريب أفضل لتوزيع العالم الحقيقي.نموذج الحكمة، نقترح تجهيز نماذج مختلفة مع تعبيري قبل التعبير، اسمه Linear Gaussian النموذج (LGM).تظهر النتائج التجريبية للتقييم الآلي والتقييم البشري أن الطرق تسفر عن تحسينات كبيرة على أساس الأساس.
يتطلب التواصل السلس والفعال القدرة على أداء استنتاج المناشد الكامن أو الصريح. يركز معايير التفكير في المناولة (مثل Socialiqa و Commonsenseqa) بشكل رئيسي على المهمة التمييزية المتمثلة في اختيار الإجابة الصحيحة من مجموعة من المرشحين، ولا تنطوي على تولي د لغة تفاعلية كما هو الحال في الحوار. علاوة على ذلك، فإن مجموعات بيانات الحوار الحالية لا تركز صراحة على عرض المنطقي كجايت. في هذه الورقة، نقدم دراسة تجريبية للعموم في توليد استجابة الحوار. نحن أولا استخراج السيارات الحوارات العمومية من مجموعات بيانات الحوار الموجودة من خلال الاستفادة من Congalnet، الرسم البياني المعرفة للعموم. علاوة على ذلك، بناء على السياقات الاجتماعية / المواقف في Socialiqa، نجمع مجموعة بيانات حوار جديدة مع حوارات 25 كيلو بايت تهدف إلى عرض العمولة الاجتماعية في بيئة تفاعلية. نقوم بتقييم نماذج توليد الاستجابة المدربة باستخدام مجموعات البيانات هذه والعثور على النماذج المدربة على كلا من المستخرجة وبياناتنا التي تم جمعها تنتج الردود التي تظهر باستمرار المزيد من المنطقي من الأساس. أخيرا، نقترح نهج للتقييم التلقائي للعموم التي تعتمد على ميزات مشتقة من نماذج النقدية واللغة المدربة مسبقا وحوار الحوار، وتظهر ارتباطا معقولا بالتقييم البشري لجودة الردود.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا