أظهرت نماذج استخراج العلاقات العصبية نتائج واعدة في السنوات الأخيرة؛ومع ذلك، فإن أداء النموذج يسقط بشكل كبير منحت فقط بعض عينات التدريب فقط.تعمل الأعمال الحديثة التي تحاول الاستفادة من التقدم في سلطة قليلة التعلم لحل مشكلة الموارد المنخفضة، حيث تقوم
بتدريب نماذج الملصقات الملائمة لمقارنة أوجه التشابه الدلالي بشكل مباشر بين جمل السياق في مساحة التضمين.ومع ذلك، فإن المعلومات التي تدرك الملصقات، أي علبة العلاقة التي تحتوي على المعرفة الدلالية المتعلقة بالعلاقة نفسها، مهملة في كثير من الأحيان للتنبؤ.في هذا العمل، نقترح إطارا للنظر في معلومات رسم الخرائط الدلالية الملمع والملصقات على حد سواء لاستخراج العلاقات المتعلقة بالموارد المنخفضة.نظهر أن دمج النوعين المذكورين أعلاه من تعيين معلومات التعيين في كلا المحالمان والضبط بشكل جيد يمكن أن يحسن بشكل كبير من أداء النموذج على مهام استخراج العلاقات المتعلقة بالموارد المنخفضة.
تهدف استخراج العلاقات المنخفضة الموارد (LRE) إلى استخراج حقائق العلاقة من كورسا محدودة المسمى عندما تشريح الإنسان نادرة. تعمل الأعمال الموجودة إما استخدام مخطط التدريب الذاتي لتوليد ملصقات زائفة ستتسبب في مشكلة الانجراف التدريجي، أو نظام التعلم التلو
ي الاستفادي الذي لا يتطلب التغيلات بشكل صريح. لتخفيف التحيز الاختيار بسبب عدم وجود حلقات ردود الفعل في نماذج التعلم الحالية، قمنا بتطوير طريقة تعليمية لتعزيز التعزيز التدرج لتشجيع بيانات الملصقات الزائفة لتقليد اتجاه نزول التدرج على البيانات المسمى و Bootstrap إمكانية التحسين من خلال التجربة والخطأ. نقترح أيضا إطارا يسمى Gradlre، الذي يتعامل مع سيناريوهات رئيسيين في استخراج علاقة الموارد المنخفضة. إلى جانب السيناريو حيث تكون البيانات غير المسبقة كافية، يتعامل Gradlre الموقف حيث لا تتوفر بيانات غير قابلة للتحقيق، من خلال استغلال طريقة تكبير سياقيا لتوليد البيانات. النتائج التجريبية على مجموعات بيانات عامة تثبت فعالية الخريجين في استخراج العلاقات المنخفضة للموارد عند مقارنة مع الأساس.