ترغب بنشر مسار تعليمي؟ اضغط هنا

Let $M$ be a hyperkahler manifold of maximal holonomy (that is, an IHS manifold), and let $K$ be its Kahler cone, which is an open, convex subset in the space $H^{1,1}(M, R)$ of real (1,1)-forms. This space is equipped with a canonical bilinear symme tric form of signature $(1,n)$ obtained as a restriction of the Bogomolov-Beauville-Fujiki form. The set of vectors of positive square in the space of signature $(1,n)$ is a disconnected union of two convex cones. The positive cone is the component which contains the Kahler cone. We say that the Kahler cone is round if it is equal to the positive cone. The manifolds with round Kahler cones have unique bimeromorphic model and correspond to Hausdorff points in the corresponding Teichmuller space. We prove thay any maximal holonomy hyperkahler manifold with $b_2 > 4$ has a deformation with round Kahler cone and the Picard lattice of signature (1,1), admitting two non-collinear integer isotropic classes. This is used to show that all known examples of hyperkahler manifolds admit a deformation with two transversal Lagrangian fibrations, and the Kobayashi metric vanishes unless the Picard rank is maximal.
Adopting the omni-Lie algebroid approach to Dirac-Jacobi structures, we propose and investigate a notion of weak dual pairs in Dirac-Jacobi geometry. Their main motivating examples arise from the theory of multiplicative precontact structures on Lie groupoids. Among other properties of weak dual pairs, we prove two main results. 1) We show that the property of fitting in a weak dual pair defines an equivalence relation for Dirac-Jacobi manifolds. So, in particular, we get the existence of self-dual pairs and this immediately leads to an alternative proof of the normal form theorem around Dirac-Jacobi transversals. 2) We prove the characteristic leaf correspondence theorem for weak dual pairs paralleling and extending analogous results for symplectic and contact dual pairs. Moreover, the same ideas of this proof apply to get a presymplectic leaf correspondence for weak dual pairs in Dirac geometry (not yet present in literature).
138 - Abra~ao Mendes 2021
The aim of this work is to present an initial data version of Hawkings theorem on the topology of back hole spacetimes in the context of manifolds with boundary. More precisely, we generalize the results of G. J. Galloway and R. Schoen [13] and G. J. Galloway [11, 12] by proving that a compact free boundary stable marginally outer trapped surface (MOTS) $Sigma$ in an initial data set with boundary satisfying natural dominant energy conditions (DEC) is of positive Yamabe type, i.e. $Sigma$ admits a metric of positive scalar curvature with minimal boundary, provided $Sigma$ is outermost. To do so, we prove that if $Sigma$ is a compact free boundary stable MOTS which does not admit a metric of positive scalar curvature with minimal boundary in an initial data set satisfying the interior and the boundary DEC, then an outer neighborhood of $Sigma$ can be foliated by free boundary MOTS $Sigma_t$, assuming that $Sigma$ is weakly outermost. Moreover, each $Sigma_t$ has vanishing outward null second fundamental form, is Ricci flat with totally geodesic boundary, and the dominant energy conditions saturate on $Sigma_t$.
Given $Hin [0,1)$ and given a $C^0$ exterior domain $Omega$ in a $H-$hypersphere of $mathbb{H}^3,$ the existence of hyperbolic Killing graphs of CMC $H$ defined in $overline{Omega}$ with boundary $ partial Omega $ included in the $H-$hypersphere is obtained.
Some well-known Lorentzian concepts are transferred into the more general setting of cone structures, which provide both the causality of the spacetime and the notion of cone geodesics without making use of any metric. Lightlike hypersurfaces are def ined within this framework, showing that they admit a unique folitation by cone geodesics. This property becomes crucial after proving that, in globally hyperbolic spacetimes, achronal boundaries are lightlike hypersurfaces under some restrictions, allowing one to easily obtain some time-minimization properties of cone geodesics among causal curves departing from a hypersurface of the spacetime.
189 - Donu Arapura , Botong Wang 2021
We conjecture that any perverse sheaf on a compact aspherical Kahler manifold has non-negative Euler characteristic. This extends the Singer-Hopf conjecture in the Kahler setting. We verify the stronger conjecture when the manifold X has non-positive holomorphic bisectional curvature. We also show that the conjecture holds when X is projective and in possession of a faithful semi-simple rigid local system. The first result is proved by expressing the Euler characteristic as an intersection number involving the characteristic cycle, and then using the curvature conditions to deduce non-negativity. For the second result, we have that the local system underlies a complex variation of Hodge structure. We then deduce the desired inequality from the curvature properties of the image of the period map.
139 - Haojie Chen , Xiaolan Nie 2021
We prove two results related to the Schwarz lemma in complex geometry. First, we show that if the inequality in the Schwarz lemmata of Yau, Royden and Tosatti becomes equality at one point, then the equality holds on the whole manifold. In particular , the holomorphic map is totally geodesic and has constant rank. In the second part, we study the holomorphic sectional curvature on an almost Hermitian manifold and establish a Schwarz lemma in terms of holomorphic sectional curvatures in almost Hermitian setting.
Recent work showed that a theorem of Joris (that a function $f$ is smooth if two coprime powers of $f$ are smooth) is valid in a wide variety of ultradifferentiable classes $mathcal C$. The core of the proof was essentially $1$-dimensional. In certai n cases a multidimensional version resulted from subtle reduction arguments, but general validity, notably in the quasianalytic setting, remained open. In this paper we give a uniform proof which works in all cases and dimensions. It yields the result even on infinite dimensional Banach spaces and convenient vector spaces. We also consider more general nonlinear conditions, namely general analytic germs $Phi$ instead of the powers, and characterize when $Phi circ f in mathcal C$ implies $f in mathcal C$.
We obtain non-vanishing of group $L^p$-cohomology of Lie groups for $p$ large and when the degree is equal to the rank of the group. This applies both to semisimple and to some suitable solvable groups. In particular, it confirms that Gromovs questio n on vanishing below the rank is formulated optimally. To achieve this, some complementary vanishings are combined with the use of spectral sequences. To deduce the semisimple case from the solvable one, we also need comparison results between various theories for $L^p$-cohomology, allowing the use of quasi-isometry invariance.
We study solutions to generalized Ricci flow on four-manifolds with a nilpotent, codimension $1$ symmetry. We show that all such flows are immortal, and satisfy type III curvature and diameter estimates. Using a new kind of monotone energy adapted to this setting, we show that blowdown limits lie in a canonical finite-dimensional family of solutions. The results are new for Ricci flow.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا