ﻻ يوجد ملخص باللغة العربية
We study solutions to generalized Ricci flow on four-manifolds with a nilpotent, codimension $1$ symmetry. We show that all such flows are immortal, and satisfy type III curvature and diameter estimates. Using a new kind of monotone energy adapted to this setting, we show that blowdown limits lie in a canonical finite-dimensional family of solutions. The results are new for Ricci flow.
In this paper we consider $4$-dimensional steady soliton singularity models, i.e., complete steady gradient Ricci solitons that arise as the rescaled limit of a finite time singular solution of the Ricci flow on a closed $4$-manifold. In particular,
In this article, we study four-dimensional complete gradient shrinking Ricci solitons. We prove that a four-dimensional complete gradient shrinking Ricci soliton satisfying a pointwise condition involving either the self-dual or anti-self-dual part o
Let $(M, g, f)$ be a $4$-dimensional complete noncompact gradient shrinking Ricci soliton with the equation $Ric+ abla^2f=lambda g$, where $lambda$ is a positive real number. We prove that if $M$ has constant scalar curvature $S=2lambda$, it must be
This book gives an introduction to fundamental aspects of generalized Riemannian, complex, and Kahler geometry. This leads to an extension of the classical Einstein-Hilbert action, which yields natural extensions of Einstein and Calabi-Yau structures
We exhibit the first examples of closed 4-manifolds with nonnegative sectional curvature that lose this property when evolved via Ricci flow.