النمذجة اللغوية المعقدة (MLM) هي واحدة من المهام الفرعية الرئيسية في محاكاة لغة الرؤية. في الإعداد عبر الوسائط، يتم ملثمين الرموز في الجملة بشكل عشوائي، والنموذج يتوقع أن تكون الرموز الممكنة التي أعطتها الصورة والنص. في هذه الورقة، نلاحظ العديد من عي
وب MLM الرئيسية في هذا الإعداد. أولا، حيث تميل التسميات التوضيحية إلى أن تكون قصيرة، في ثلث الجمل لا يتم أخذ عينات من الجمل. ثانيا، غالبية الرموز الملثمين هي التوقف عن الكلمات وعلامات الترقيم، مما يؤدي إلى نقص في الاستخدام للصورة. إننا نحقق في مجموعة من استراتيجيات التقنيع البديلة المحددة لإعداد العرض المتعلق الذي يتناول هذه أوجه القصور، تهدف إلى توصيف أفضل من النص والصورة في التمثيل المستفاد. عند تدريب ما قبل التدريب على نموذج LXMERT، تتحسن استراتيجياتنا البديلة الخاصة بنا باستمرار عبر استراتيجية التقنيع الأصلية على ثلاثة مهام أسفل المصب، خاصة في إعدادات الموارد المنخفضة. علاوة على ذلك، يتفوق نهجنا قبل التدريب بشكل كبير على نموذج الأساس في مهمة التحقيق الفورية المصممة لاستنباط كائنات الصورة. تشير هذه النتائج وتحليلنا إلى أن طريقتنا تسمح باستفادة أفضل من بيانات التدريب.
أشار العمل السابق إلى أن النماذج اللغوية المحددة مسبقا (MLMS) غير فعالة مثل تشفير المعجمات المعجمية والجملة العالمية خارج الرف، أي دون مزيد من ضبط الدقيقة بشكل جيد على NLI أو تشابه الجملة أو إعادة الصياغة المهام باستخدام بيانات المهام المشروحة وبعد ف
ي هذا العمل، نوضح أنه من الممكن تحويل MLMS إلى تشفير معجمية وقضية فعالة حتى دون أي بيانات إضافية، والاعتماد ببساطة على الإشراف الذاتي. نقترح تقنية تعليمية بسيطة للغاية وسريعة وفعالة وفعالة، وتسمى برت مرآة، والتي تحول MLMS (على سبيل المثال، بيرت وروبرتا) إلى مثل هذه اللوائح في 20-30 ثانية مع عدم وجود إمكانية الوصول إلى المعرفة الخارجية الإضافية. تعتمد Mirror-Bert على أزواج سلسلة متطابقة وعزز قليلا كأمثلة إيجابية (I.E.، مرادف)، وتهدف إلى زيادة تشابهها أثناء ضبط الهوية ". نبلغ عن مكاسب ضخمة أكثر من MLMS Off-Relf مع Mirror-Bert كل من المستوى المعجمي والمهام على مستوى الجملة، عبر المجالات المختلفة ولغات مختلفة. وخاصة، في مشابه الجملة (STS) ومهام إستقبال الإجابة عن السؤال (QNLI)، فإن نموذجنا المرآة الإشراف على نفسه يطابق أداء نماذج Bertence-Bert من العمل السابق الذي يعتمد على بيانات المهام المشروح. أخيرا، نقوم بتحويل أعمق في الأعمال الداخلية لل MLMS، واقترح بعض الأدلة على سبب قيام هذا النهج بسيطة بسيطة بالمرآبة الرصيد بإعادة ترميز اللوائح المعجمية والعامة العامة الفعالة.
في هذه الدراسة، نقترح طريقة تعلم الإشراف على الذات التي تطبق تمثيلات معنى الكلمات في السياق من نموذج لغة ملثم مسبقا مسبقا. تعد تمثيلات الكلمات هي الأساس للدلالات المعجمية في السياق وتقديرات التشابه المنصوصية الدلالية غير المرفوعة (STS). تقوم الدراسة
السابقة بتحويل التمثيلات السياقية التي تستخدم تضمين كلمة ثابتة لإضعاف الآثار المفرطة لمعلومات السياقية. على النقيض من ذلك، تستمد الأسلوب المقترح على تمثيلات كلمة معنى في السياق مع الحفاظ على معلومات السياق المفيدة سليمة. على وجه التحديد، تتعلم طريقةنا الجمع بين مخرجات الطبقات المخفية المختلفة التي تستخدم الانتباه عن الذات من خلال التعلم الذاتي الخاضع للإشراف مع كائن تدريب تلقائيا تلقائيا. لتقييم أداء النهج المقترح، أجرينا تجارب مقارنة باستخدام مجموعة من المهام القياسية. تؤكد النتائج أن تمثيلاتنا أظهرت أداء تنافسي مقارنة بسلطة حديثة من الأسلوب لتحويل التمثيلات السياقية للمهام الدلالية المعجمية السياقة وتفوقها على تقدير STS.
أصبحت بنية المحولات في كل مكان في مجال معالجة اللغات الطبيعية.لتفسير النماذج القائمة على المحولات، تم تحليل أنماط اهتمامها على نطاق واسع.ومع ذلك، فإن بنية المحولات لا تتكون فقط من الاهتمام متعدد الأطراف؛يمكن أن تسهم مكونات أخرى أيضا في الأداء التدريج
ي المحولات.في هذه الدراسة، مددنا نطاق تحليل المحولات من أنماط الانتباه فقط إلى كتلة الاهتمام بأكمله، أي اهتمام متعدد الأطراف، والاتصال المتبقي، وتطبيع الطبقة.يوضح تحليل النماذج اللغوية المقصودة للمحولات أن التفاعل الرمزي إلى الرمز المميز الذي يؤديه عن طريق الاهتمام له تأثير أقل على التمثيل الوسيط مما كان مفترض سابقا.توفر هذه النتائج تفسيرات جديدة بديهية للتقارير القائمة؛على سبيل المثال، تم تجاهل أنماط الانتباه المستفادة لا تؤثر سلبا على الأداء.رموز تجاربنا متاحة للجمهور.
في هذه الورقة، نقدم ثلاثة أنظمة مختلفة للإشراف على تنبؤ التعقيد المعجمي باللغة الإنجليزية للتعبيرات الفردية والمتعددة المهام ل Semeval-2021.الرمز المستهدف في السياق.تجمع أفضل نظامنا بين المعلومات من هذه المصادر الثلاث.تشير النتائج إلى أن المعلومات ال
واردة من نماذج اللغة الملثمين ويمكن دمج ترميز مستوى الطابع لتحسين تنبؤ التعقيد المعجمي.
بالنسبة لأي موقع على شبكة الإنترنت للتجارة الإلكترونية، فهذا مشكلة غير خيالية تبني الإعلانات الدائمة التي تجذب المتسوقين.من الصعب اجتياز شريط الجودة الإبداعي للموقع، خاصة على نطاق واسع.وبالتالي نقترح حل برنامجي لتوليد عناوين إعلانات المنتج باستخدام م
حتوى البيع بالتجزئة.نقترح حالة من التطبيقات الفنية لطرق التدرج في سياسة التعلم (RL) على المحولات (Vaswani et al.، 2017) نماذج لغة ملثم مقرها (ديفلين وآخرون، 2019).تقوم طريقةنا بإنشاء العنوان الإعلاني من خلال تكييف مشترك على منتجات متعددة يرغب البائع في الإعلان.نوضح أن أسلوبنا تتفوق على أساليب المحولات الحالية و LSTM + RL في مقاييس تداخل وتدقيق الجودة.نظهر أيضا أن عناويننا النموذجية التي تم إنشاؤها تفوقت عناوين حقوق الإنسان المقدمة من حيث القواعد الناقدية والجودة الإبداعية على النحو المحدد بالتدقيق.
جعلت النماذج المدربة مسبقا مثل تمثيل التشفير ثنائي الاتجاه من المحولات (بيرت)، قفزة كبيرة إلى الأمام في مهام معالجة اللغة الطبيعية (NLP).ومع ذلك، لا تزال هناك بعض أوجه القصور في مهمة نمذجة اللغة المعقدة (MLM) التي يؤديها هذه النماذج.في هذه الورقة، نق
دم أول رسم بياني متعدد الأنواع بما في ذلك أنواع مختلفة من العلاقات بين الكلمات.بعد ذلك، نقترح النموذج متعدد الرسوم البياني المعزز (MG-BERT) نموذجا يعتمد على بيرتف.تضمين MG-BERT تضمين الرموز الرموز أثناء الاستفادة من الرسم البياني الثابت متعدد الرسوم البيانية التي تحتوي على حوادث مشتركة عالمية في نصوص النص بجانب الحقائق العالمية الحقيقية العالمية حول الكلمات الموجودة في رسوم المعرفة.يستخدم النموذج المقترح أيضا رسم بياني جملة ديناميكية لالتقاط السياق المحلي بشكل فعال.تظهر النتائج التجريبية أن طرازنا يمكن أن يعزز بشكل كبير الأداء في مهمة الامتيازات.
يعد الكشف عن الموقف على Twitter تحديا بشكل خاص بسبب الطول القصير لكل سقسقة، والتعايش المستمر لمصطلحات جديدة وعلاج التصنيف، وانحراف هيكل الجملة من النثر القياسي.تم عرض نماذج لغة ذات ضبطها باستخدام بيانات داخل المجال على نطاق واسع لتكون الحالة الجديدة
للعديد من مهام NLP، بما في ذلك اكتشاف الموقف.في هذه الورقة، نقترح طريقة رواية متناصة قائمة بذاتها تعزز نموذج اللغة الملثم للكشف عن الموقف.بدلا من إخفاء الرمز المميز العشوائي، نقترح استخدام نسبة مرجحة للأحكام المرجحة لتحديد الكلمات ذات الموقف العالي ومن ثم نموذج آلية الاهتمام التي تركز على هذه الكلمات.نظهر أن نهجنا المقترح يتفوق على حالة الفنية من أجل الكشف عن البيانات حول بيانات تويتر حول الانتخابات الرئاسية الأمريكية 2020.