تصف هذه الورقة مساهمتنا في مهمة Semeval 2021 1 (Shardlow et al.، 2021): تنبؤ التعقيد المعجمي.في نهجنا، نستفيد النموذج Electra ومحاولة تعكس نظام شرح البيانات.على الرغم من أن المهمة مهمة الانحدار، إلا أننا نوضح أننا نستطيع التعامل معها كجميع العديد من
نماذج التصنيف والانحدار.حقق هذا النهج المضاد بشدة إلى حد ما درجة مياه 0.0654 للمهمة الفرعية 1 و MAE من 0.0811 بشأن المهمة الفرعية 2. بالإضافة إلى ذلك، استخدمنا مفهوم إشارات الإشراف الضعيفة من برت لمعان في عملنا، وتحسن بشكل كبيردرجة ماي في المهمة الفرعية 1.
إن تقييم تعقيد كلمة مستهدفة في سياق حكومي هو الهدف من مهمة تنبؤ التعقيد المعجمية في Semeval-2021.تقدم هذه الورقة النظام الذي تم إنشاؤه لتقييم تعقيد كلمات واحدة معجمية، والجمع بين المتغيرات اللغوية والنفسية في مجموعة من التجارب التي تنطوي على غابة عشو
ائية و XGBOOST Regrations.ما وراء ترميز معلومات خارج السياق حول LEMMA، نفذنا ميزات بناء على نماذج اللغة المدربة مسبقا لنموذج تعقيد الكلمة المستهدف في السياق.
في هذه الورقة، نقدم ثلاثة أنظمة مختلفة للإشراف على تنبؤ التعقيد المعجمي باللغة الإنجليزية للتعبيرات الفردية والمتعددة المهام ل Semeval-2021.الرمز المستهدف في السياق.تجمع أفضل نظامنا بين المعلومات من هذه المصادر الثلاث.تشير النتائج إلى أن المعلومات ال
واردة من نماذج اللغة الملثمين ويمكن دمج ترميز مستوى الطابع لتحسين تنبؤ التعقيد المعجمي.
تقدم هذه الورقة النتائج والنتائج الرئيسية لمهمة Semeval-2021 1 - تنبؤ التعقيد المعجمي.قدمنا المشاركين مع نسخة معدية من كوربوس المعقدة (Shardlow et al. 2020).تعد Complex وجبة إنجليزية متعددة المجالات التي تم فيها تفاح الكلمات والتعبيرات المتعددة الكلم
ة (MWES) فيما يتعلق بعقودها باستخدام مقياس Likert خمس نقاط.Semeval-2021 المهمة 1 الممتازة بمهام فرعية: المهمة الفرعية 1 التي تركز على الكلمات الفرعية والمهمة الفرعية 2 التي تركز على mwes.اجتذبت المنافسة 198 فريقا في المجموع، منها 54 فريقا قدم رسميا يدير في بيانات الاختبار إلى المهمة الفرعية 1 و 37 إلى المهمة الفرعية 2.
في هذه الورقة، نقترح طريقة لاستدادتها معلومات جملة المعلومات ومعلومات تردد الكلمات الخاصة بمهمة التعقيد ذات التعقيد 1-LCP (LCP). في نظامنا، تأتي معلومات الجملة من نموذج روبرتا، وتأتي معلومات تردد الكلمات من خوارزمية TF-IDF. استخدم Black Block كطبقة م
شتركة لتعلم العقوبة ومعلومات تردد الكلمات وصفنا تنفيذ أفضل نظامنا وناقش أساليبنا وتجاربنا في المهمة. تنقسم المهمة المشتركة إلى مهمتين فرعيتين. الهدف من المهام الفرعية هو التنبؤ بعقد كلمة محددة سلفا. تنقسم المهمة المشتركة إلى قسمين فرعيين. الهدف من اثنين من المهن الفرعية هو التنبؤ بعقد كلمة محددة سلفا. مؤشر تقييم المهمة هو معامل الارتباط بيرسون. يحتوي أفضل نظام الأداء لدينا على معاملات ارتباط بيرسون من 0.7434 و 0.8000 في مجموعة اختبار المراكز الفرعية ذات الرمز الفرعي واحد ومجموعة اختبار الترجمة الفرعية متعددة رميات، على التوالي.