دقة Aquerence هي مفتاح العديد من مهام معالجة اللغة الطبيعية، لكنها غير مستكشفة نسبيا في معالجة لغة الإشارة. في لغات موقعة، تستخدم الفضاء في المقام الأول لتحديد المرجع. لن يقوم حل دقة Aquerence للغات الموقعة فقط بتمكين أنظمة معالجة لغة الإشارة عالية ا
لمستوى، بل تقوم أيضا بتعزيز فهمنا للغة في طرائق مختلفة والمراجع الموجودة، وهي مشاكل رئيسية في دراسة اللغة المحددة. في هذه الورقة، نحن: (1) تقديم دقة COMARCALE الموقعة (SCR)، تحديا جديدا لنمذجة Aquerence وعلاج لغة الإشارة؛ (2) جمع وجعة مشروحة من لغة الإشارة الألمانية مع ملصقات ذهبية ل Taquerence جنبا إلى جنب مع برنامج شرح للمهمة؛ (3) استكشاف ميزات لفتة اليد، الإيقاعي، والعقارات المكانية الموجودة والمضي قدما لاقتراح مجموعة من الاستدلال المباشرة المباشرة ونماذج غير مخالفة للمهمة؛ (4) طرح عدة مقترحات حول طرق معالجة تعقيدات هذا التحدي بفعالية.
معظم الوقت، عند التعامل مع مهمة معينة لمعالجة اللغة الطبيعية، تتم مقارنة الأنظمة على أساس الإحصاءات العالمية مثل الاستدعاء والدقة ودرجة F1، وما إلى ذلك، بينما توفر هذه الدرجات فكرة عامة عن سلوك هذه الأنظمة، إنهم يتجاهلون جزءا رئيسيا من المعلومات التي
يمكن أن تكون مفيدة لتقييم التقدم المحرز والتحديات المتبقية المتميزة: الصعوبة النسبية في حالات الاختبار. لمعالجة هذا القصور، نقدم فكرة التقييم التفاضلي الذي يحدد فعليا التقسيم العملي من الحالات في صناديق أكثر صعوبة تدريجيا من خلال الاستفادة من التنبؤات التي قدمتها مجموعة من الأنظمة. تمكننا مقارنة الأنظمة على طول صناديق الصعوبة هذه أن تنتجنا تحليلا مدققا لأسعارها النسبية، والتي نوضحها على حالتي الاستخدام: مقارنة بين النظم المشاركة في مهمة تصنيف النص متعدد الملصقات (CLF EHENGE 2018 ICD-10 ICD-10 )، ومقارنة النماذج العصبية المدربة للكشف عن الكيانات الطبية الحيوية (مجموعة بيانات علاقات الأمراض الكيميائية الثنائية الطبيوم الكيميائية).
قامت الأبحاث الحديثة بالتحقيق في Quantum NLP، تصميم الخوارزميات التي تعالج اللغة الطبيعية في أجهزة الكمبيوتر الكمومية، وكذلك الخوارزميات الملهمة الكمومية التي تحسن أداء NLP على أجهزة الكمبيوتر الكلاسيكية.في هذا الاستطلاع، نراجع الأساليب التمثيلية عند
تقاطعات NLP والفيزياء الكمومية في السنوات العشر الماضية، مما يصنفها وفقا لاستخدام نظرية الكم، والأهداف اللغوية التي يتم تصميمها، والتطبيق المصب.تنتهي مراجعة الأدبيات بمناقشة حول العوامل الرئيسية للنجاح الذي حققه العمل الحالي، وكذلك التحديات المقبلة، بهدف فهم أفضل الوعود والمزيد من الاتجاهات.
أظهرت نماذج الشبكة العصبية المستندة إلى ما يحقظ أن عروض حديثة (SOTA) على مهام معالجة اللغة الطبيعية (NLP). تعد تمثيل الجملة الأكثر استخداما لأساليب NLP ذات الاستخدام العصبي سلسلة من الكلمات الفرعية المختلفة عن تمثيل الجملة من الأساليب غير العصبية الت
ي يتم إنشاؤها باستخدام تقنيات NLP الأساسية، مثل العلامات على جزء من الكلام (POS)، اسمه الكيان (NE) الاعتراف، والتحليل. تتلقى معظم نماذج NLP ذات القائمة العصبية فقط ناقلات ترميزها من سلسلة من الكلمات الفرعية التي تم الحصول عليها من نص الإدخال. ومع ذلك، لا يمكن الحصول على معلومات NLP الأساسية، مثل علامات نقاط البيع، ونتائج NES، وتحليل النتائج، إلخ، بشكل صريح من النص الكبير غير المستخديم المستخدمة في النماذج المستندة إلى ما يحقظ. تستكشف هذه الورقة استخدام NES على مهمتين يابانيين؛ تصنيف المستندات والجيل الرئيسي باستخدام النماذج القائمة على المحولات، للكشف عن فعالية معلومات NLP الأساسية. تظهر النتائج التجريبية مع ثمانية NES أساسية وحوالي 200 نسمة موسعة أن NES يحسن الدقة على الرغم من استخدام نموذج كبير يستند إلى الاحتمالات المدربة باستخدام بيانات نصية 70 جيجابايت.
تم استخدام خوارزميات التعلم التلوي من الدرجة الأولى على نطاق واسع في الممارسة لتعلم معلمات النماذج الأولية التي يمكن تكييفها بسرعة مع مهام جديدة بسبب كفاءتها وفعاليتها. ومع ذلك، تجد الدراسات الحالية أن Meta-Learner يمكن أن يتألف إلى بعض التكيف المحدد
عندما يكون لدينا مهام غير متجانسة، مما يؤدي إلى أدائه المتدهورة بشكل كبير. في تطبيقات معالجة اللغة الطبيعية (NLP)، غالبا ما تكون مجموعات البيانات متنوعة وكل مهمة لها خصائصها الفريدة. لذلك، لمعالجة القضية الجاكهة عند تطبيق تطبيق التعلم من الدرجة الأولى من الدرجة الأولى إلى تطبيقات NLP، نقترح تخفيض تباين مقدر التدرج المستخدم في تكيف المهام. تحقيقا لهذه الغاية، نقوم بتطوير خوارزمية للتعلم من الدرجة الأولى من الدرجة الأولى من الدرجة الأولى. جوهر خوارزميةنا هو إدخال مصطلح تقليل متباين رواية لتقدير التدرج عند إجراء تكيف المهمة. تجارب على تطبيقين NLP: يظهر تتبع عدد قليل من التصنيف النصي وتتبع حالة الحوار متعدد المجالات الأداء الفائق لطرأنا المقترحة.
تعد أنظمة معالجة اللغة الطبيعية (NLP) في قلب العديد من أنظمة صنع القرار الآلي الحرجة التي تجعل توصيات حاسمة حول عالمنا في المستقبل.تم دراسة التحيز بين الجنسين في NLP جيدا باللغة الإنجليزية، لكنها كانت أقل دراستها بلغات أخرى.في هذه الورقة، تضم فريقا ب
ينهم متحدثون 9 لغات - الصينية والإسبانية والإنجليزية والعربية والألمانية والفرنسية والفرصي والأوردو وولف - تقارير وتحليل قياسات التحيز بين الجنسين في ولاية ويكيبيديا كورسيا لهذه اللغات 9 لغات 9 لغات 9 لغات 9 لغات 9 لغات هذه.نقوم بتطوير ملحقات لحسابات متر راي حساسية على مستوى المهنة والجنس على مستوى كوربوس المصممة في الأصل للغة الإنجليزية وتطبيقها على 8 لغات أخرى، بما في ذلك اللغات التي لديها أسماء جنسانية من النوع الاجتماعي بما في ذلك كلمات المهنة الأنثوية والمذكر والمحايدة المختلفة.نناقش العمل في المستقبل من شأنه أن يستفيد بشكل كبير من منظور اللغويات الحاسوبية.
كيف يمكننا تصميم أنظمة معالجة اللغة الطبيعية (NLP) التي تتعلم من ردود الفعل البشرية؟هناك هيئة بحثية متزايدة من أطر NLP البشرية (HITL) التي تدمج بشكل مستمر ردود الفعل الإنسانية لتحسين النموذج نفسه.Hitl NLP Research NLP NATCENT ولكن MultiriSious - حل م
شاكل NLP المختلفة، وجمع تعليقات متنوعة من أشخاص مختلفين، وتطبيق أساليب مختلفة للتعلم من ردود الفعل الإنسانية.نقدم دراسة استقصا لمجتمعات Hitl NLP من كل من مجتمعات التعلم الآلي (ML) وتفاديا الإنسان (HCI) التي تسلط الضوء على تاريخها القصير الذي يلهم، ويلخص تماما الأطر الأخيرة التي تركز على مهامها وأهدافها والتفاعلات البشرية وتعلم ردود الفعلطرق.أخيرا، نناقش الدراسات المستقبلية لإدماج ردود فعل إنسانية في حلقة تطوير NLP.
يلقي هذه الدراسة الضوء على آثار Covid-19 في مجال معين من اللغويات الحاسوبية ومعالجة اللغات الطبيعية داخل الذكاء الاصطناعي.نحن نقدم دراسة مقطعية بشأن النوع الاجتماعي والمساهمة والخبرة التي تعتبر سنة دراسية واحدة (من أغسطس 2019 إلى 20 أغسطس) كعاموبئ في
الوباء.يتم تضمين أغسطس مرتين لغرض مقارنة بين السنوية.في حين ارتفع الاتجاه في المنشورات مع الأزمة، فإن النتائج تظهر أن النسبة بين المنشورات النسائية والذكور انخفضت.هذا يساعد فقط على تقليل أهمية دور الإناث في المساهمات العلمية لللغويات الحاسوبية (أصبح الآن أقل بكثير من ذروة 0.24).يحتوي الوباء على تأثير سلبي بشكل خاص على إنتاج كبار الباحثات في المركز الأول للمؤلفين (أقصى عمل)، تليها الباحثون الصغار الإناث في المركز الأخير من المؤلفين (الإشراف أو العمل التعاوني).
يعد انتشار الأخبار المزيفة من القضايا الحالية التي تؤثر على عدد من المجالات المهمة في المجتمع ، مثل السياسة والاقتصاد والصحة.
في مجال معالجة اللغة الطبيعية ، حاولت المبادرات الأخيرة الكشف عن الأخبار المزيفة بطرق مختلفة، بدءًا من الأساليب القائمة عل
ى اللغة إلى التحقق القائم على المحتوى.
في مثل هذه الأساليب ، يعد اختيار ميزات تصنيف الأخبار الكاذبة والحقيقية أحد أهم أجزاء العملية. تقدم هذه الورقة دراسة حول تأثير ميزات سهولة القراءة للكشف عن الأخبار المزيفة للغة البرتغالية البرازيلية. تظهر النتائج أن هذه الميزات ذات صلة بالمهمة (تحقق بمفردها دقة تصنيف تصل إلى 92٪) وقد تحسن نتائج التصنيف السابقة.
(بحث انكليزي)
يهدف هذا البحث إلى اقتراح طريقة لتحسين نتائج استرجاع المعلومات العربية دلالياً
و ذلك بتلخيص النصوص تجريدياً (Abstractive Summary) باستخدام خوارزميات
معالجة اللغات الطبيعية (NLP), حل غموض معاني الكلمات (WSD) و قياس التشابهية
الدلالية (Semantic Si
milarity) فيما بينها باستخدام الأنتولوجيا العربية Arabic
WordNet.
معالجة اللغات الطبيعية
Semantic analysis
استرجاع المعلومات
التلخيص التجريدي
الأنتولوجيا العربية ووردنت
العلاقة الدلالية المفاهيمية
التشابهية الدلالية
التحليل الدلالي
حل غموض معاني الكلمات
(Natural Language Processing (NLP
(Information Retrieval (IR
Abstractive Summarization
(Arabic WordNet (AWN
Conceptual Semantic Relation
Semantic Similarity
(Word Sense Disambiguation (WSD
المزيد..