ترغب بنشر مسار تعليمي؟ اضغط هنا

بالنسبة للأطفال، أدى النظام المدرب على جثة كبيرة من مكبرات الصوت الكبار أسوأ من النظام المدربين على جثة أصغر بكثير من خطاب الأطفال.هذا بسبب عدم تطابق الصوت بين التدريب واختبار البيانات.لالتقاط المزيد من التقلبات الصوتية، قامنا بتدريب نظام مشترك مع بي انات مختلطة من البالغين والأطفال.ينجذب النظام المشترك إلى أفضل أغاني للأطفال دون تدهور للبالغين.وبالتالي، فإن النظام الفردي المدرب مع البيانات المختلطة ينطبق على التحقق من السماعات لكل من البالغين والأطفال.
على الرغم من أن Word Adgeddings والمواضيع هي تمثيل تكميلي، إلا أن العديد من الأعمال السابقة استخدمت فقط Arestrained Word Areging في النمذجة الموضوعية (العصبية) لمعالجة Sparsity البيانات في نص قصير أو مجموعة صغيرة من المستندات. يعرض هذا العمل إطارا لل نمذجة النمذجة العصبية الرواية باستخدام مساحات تضمين متعددة الرؤية: (1) - Arbrained Topic-Embeddings، و (2) - Ardrained Word-Argeddings (غير حساس للسياق من القفازات والسياق الحساسة من نماذج بيرت) بالاشتراك من واحد أو العديد من المصادر لتحسين جودة الموضوع والتعامل بشكل أفضل مع Polysemy. عند القيام بذلك، نقوم أولا بإنشاء حمامات متعصفة من الموضوع المسبق (I.E.، TopicPool) و Adgeddings Word (I.E.، WordPool). بعد ذلك، حددنا واحدا أو أكثر من المجال (المجال) المصدر (SOB) ونقل المعرفة لتوجيه التعلم الهادف في المجال المستهدف Sparse. ضمن النمذجة الموضوعية العصبية، نحدد جودة المواضيع وتمثيلات المستند عبر التعميم (الحيرة)، إمكانية الترجمة الترجمة الترجمة الشفوية (تماسك الموضوع) واسترجاع المعلومات (IR) باستخدام مجموعات مستندات قصيرة ونص وطويلة وصغيرة من الأخبار والمجالات الطبية وبعد تقديم مساحات تضمين متعددة المشتريات متعددة المصدر، وقد أظهرنا نمذجة موضوع عصبي للحالة باستخدام 6 مصدر (الموارد العالية) و 5 أهداف (الموارد المنخفضة).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا