ترغب بنشر مسار تعليمي؟ اضغط هنا

نمذجة موضوع عصبي متعدد المصدر في مساحات تضمين متعددة الرؤية

Multi-source Neural Topic Modeling in Multi-view Embedding Spaces

256   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

على الرغم من أن Word Adgeddings والمواضيع هي تمثيل تكميلي، إلا أن العديد من الأعمال السابقة استخدمت فقط Arestrained Word Areging في النمذجة الموضوعية (العصبية) لمعالجة Sparsity البيانات في نص قصير أو مجموعة صغيرة من المستندات. يعرض هذا العمل إطارا للنمذجة النمذجة العصبية الرواية باستخدام مساحات تضمين متعددة الرؤية: (1) - Arbrained Topic-Embeddings، و (2) - Ardrained Word-Argeddings (غير حساس للسياق من القفازات والسياق الحساسة من نماذج بيرت) بالاشتراك من واحد أو العديد من المصادر لتحسين جودة الموضوع والتعامل بشكل أفضل مع Polysemy. عند القيام بذلك، نقوم أولا بإنشاء حمامات متعصفة من الموضوع المسبق (I.E.، TopicPool) و Adgeddings Word (I.E.، WordPool). بعد ذلك، حددنا واحدا أو أكثر من المجال (المجال) المصدر (SOB) ونقل المعرفة لتوجيه التعلم الهادف في المجال المستهدف Sparse. ضمن النمذجة الموضوعية العصبية، نحدد جودة المواضيع وتمثيلات المستند عبر التعميم (الحيرة)، إمكانية الترجمة الترجمة الترجمة الشفوية (تماسك الموضوع) واسترجاع المعلومات (IR) باستخدام مجموعات مستندات قصيرة ونص وطويلة وصغيرة من الأخبار والمجالات الطبية وبعد تقديم مساحات تضمين متعددة المشتريات متعددة المصدر، وقد أظهرنا نمذجة موضوع عصبي للحالة باستخدام 6 مصدر (الموارد العالية) و 5 أهداف (الموارد المنخفضة).



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تطبق هذه الورقة نمذجة الموضوع لفهم موضوعات صحة الأم والاهتمامات والأسئلة المعبرين عنها في المجتمعات عبر الإنترنت على مواقع الشبكات الاجتماعية.ندرس تحليل Dirichlet الكامن (LDA) وطريقين حديثين: نموذج موضوع عصبي مع تقطير المعرفة (KD) ونموذج الموضوع المد مج (ETM) على نصوص صحة الأم يتم جمعها من Reddit.يتم تقييم النماذج على جودة موضوع الاستدلال والموضوع، باستخدام مقاييس التقييم التلقائي والتقييم البشري.نحن نحلل قطع اتصال بين المقاييس التلقائية والتقييمات البشرية.في حين أن LDA يؤدي الأفضل بشكل عام مع مقاييس التقييم التلقائي NPMI والتماسك، فإن نموذج الموضوع العصبي مع تقطير المعرفة مواتية من خلال تقييم الخبراء.ونحن أيضا إنشاء خبير جديد جزئيا مشروح موضوع صحة الأم
يمكن أن يكون كتابة تقارير التصوير الشعاعي للتصوير الشعاعي للثدي عرضة للخططاء وتستغرق وقتا طويلا لأخصائيي الأشعة.في هذه الورقة نقترح طريقة لتوليد تقارير التصوير الشعاعي للثدي المصنوعة من التصوير بالثدي المصنوعة من التصوير بالثديإلى أفضل ما لدينا، يمثل عملنا المحاولة الأولى لإنشاء تقرير التصوير الشعاعي للثدي باستخدام التعلم العميق.نقترح نموذج فك تشفير التشفير الذي يتضمن ترميزا مقصورا ومكيفا محولا.نوضح أن آلية الاهتمام القائمة على المحولات يمكنها الجمع بين المعلومات المرئية والدلية لتوسيع المناطق البارزة على تصوير الثدييات الإدخال وتوليد تقرير تفسير بصريا.تظهر التجارب التي أجريت، بما في ذلك تقييم من قبل عالم الأشعة المعتمدة، فعالية الطريقة المقترحة.
تعاني ترجمة الآلات العصبية التي تعتمد على نص ثنائي اللغة مع بيانات تدريبية محدودة من التنوع المعجمي، والتي تقلل من دقة ترجمة الكلمات النادرة وتقلص من تعميم نظام الترجمة.في هذا العمل، نستخدم التسميات التوضيحية المتعددة من مجموعة بيانات متعددة 30 ألفا لزيادة التنوع المعجمي بمساعدة النقل عبر اللغات للمعلومات بين اللغات في إعداد متعدد اللغات.في هذا الإعداد المتعدد اللغات والعددية، فإن إدراج الميزات المرئية يعزز جودة الترجمة بهامش كبير.تؤكد الدراسة التجريبية أن نهجنا متعدد الوسائط المقترح يحقق مكسبا كبيرا من حيث النتيجة التلقائية ويظهر متانة في التعامل مع ترجمة الكلمات النادرة بذريعة مهام الترجمة الهندية والتيلجو.
على الرغم من تحقيق أداء ملحوظ، عادة ما تستخدم أعمال المعرفة المعززة بالمعرفة عادة قاعدة معرفة متجانسة واحدة متجانسة من تغطية المعرفة المحدودة. وبالتالي، فإنهم غالبا ما ينضون في الأساليب التقليدية لأنه لا يمكن ربط جميع الحوارات بإدخالات المعرفة. تقترح هذه الورقة نموذج جيل حوار جديد، مربع حوار MSKE، لحل هذه المشكلة بثلاث مزايا فريدة من نوعها: (1) بدلا من واحد فقط، يمكن حجز MSKE في وقت واحد على الاستفادة من مصادر المعرفة غير المتجانسة المتعددة (بما في ذلك ولكن لا يقتصر على معرفة المنطقية حقائق ومعرفة النص ومعرفة Infobox) لتحسين تغطية المعرفة؛ (2) لتجنب تعارض الموضوع بين السياق ومصادر المعرفة المختلفة، نقترح اختيار مرجعي متعدد التحديد لتحديد السياق / المعرفة بشكل أفضل؛ (3) نقترح جيل متعدد المراجع لتوليد ردود إعلامية من خلال الإشارة إلى مراجع توليد متعددة في نفس الوقت. تظهر التقييمات الواسعة على مجموعة بيانات صينية الأداء الفائق لهذا العمل ضد النهج المختلفة من أحدث الأحداث. لأفضل المعرفة لدينا، هذا العمل هو أول من يستخدم المعرفة غير المتجانسة متعددة المصدر في توليد الحوار المحسن في مجال المعرفة.
تعتمد تمثيلات إعادة ربط متعددة اللغات عموما على خوارزميات تجزئة الكلمات الفرعية لإنشاء مفردات مشتركة متعددة اللغات. ومع ذلك، غالبا ما تؤدي خوارزميات المثيرة العادية في كثير من الأحيان إلى تجزئة فرعية مثالية، خاصة للغات ذات كميات محدودة من البيانات. ف ي هذه الورقة، نأخذ خطوتين رئيسيتين نحو تخفيف هذه المشكلة. أولا، نوضح تجريبيا أن تطبيق طرق تنظيم الكلمات الفرعية الحالية (KUDO، 2018؛ ProviLkov et al.، 2020)، 2020) أثناء ضبط التوصيلات المتعددة اللغات المدربة مسبقا يحسن فعالية التحويل عبر اللغات. ثانيا، للاستفادة الكاملة من مختلف تجزئة المدخلات المحتملة، نقترح تنظيم الكلمات الفرعية المتعددة للنظر (MVR)، وهي طريقة تطبق تناسق التنبؤ بين استخدام المدخلات التي يتم تخصيصها من خلال تجزئة المعيار والاحتمالية. النتائج على مرجع Xtreme متعدد اللغات (هو وآخرون، 2020) تظهر أن MVR يجلب تحسينات ثابتة تصل إلى 2.5 نقطة باستخدام خوارزميات تجزئة قياسية.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا