ترغب بنشر مسار تعليمي؟ اضغط هنا

The perceptual task of speech quality assessment (SQA) is a challenging task for machines to do. Objective SQA methods that rely on the availability of the corresponding clean reference have been the primary go-to approaches for SQA. Clearly, these m ethods fail in real-world scenarios where the ground truth clean references are not available. In recent years, non-intrusive methods that train neural networks to predict ratings or scores have attracted much attention, but they suffer from several shortcomings such as lack of robustness, reliance on labeled data for training and so on. In this work, we propose a new direction for speech quality assessment. Inspired by humans innate ability to compare and assess the quality of speech signals even when they have non-matching contents, we propose a novel framework that predicts a subjective relative quality score for the given speech signal with respect to any provided reference without using any subjective data. We show that neural networks trained using our framework produce scores that correlate well with subjective mean opinion scores (MOS) and are also competitive to methods such as DNSMOS, which explicitly relies on MOS from humans for training networks. Moreover, our method also provides a natural way to embed quality-related information in neural networks, which we show is helpful for downstream tasks such as speech enhancement.
The frequent exchange of multimedia information in the present era projects an increasing demand for copyright protection. In this work, we propose a novel audio zero-watermarking technology based on graph Fourier transform for enhancing the robustne ss with respect to copyright protection. In this approach, the combined shift operator is used to construct the graph signal, upon which the graph Fourier analysis is performed. The selected maximum absolute graph Fourier coefficients representing the characteristics of the audio segment are then encoded into a feature binary sequence using K-means algorithm. Finally, the resultant feature binary sequence is XOR-ed with the watermark binary sequence to realize the embedding of the zero-watermarking. The experimental studies show that the proposed approach performs more effectively in resisting common or synchronization attacks than the existing state-of-the-art methods.
Automatic lyrics transcription (ALT), which can be regarded as automatic speech recognition (ASR) on singing voice, is an interesting and practical topic in academia and industry. ALT has not been well developed mainly due to the dearth of paired sin ging voice and lyrics datasets for model training. Considering that there is a large amount of ASR training data, a straightforward method is to leverage ASR data to enhance ALT training. However, the improvement is marginal when training the ALT system directly with ASR data, because of the gap between the singing voice and standard speech data which is rooted in music-specific acoustic characteristics in singing voice. In this paper, we propose PDAugment, a data augmentation method that adjusts pitch and duration of speech at syllable level under the guidance of music scores to help ALT training. Specifically, we adjust the pitch and duration of each syllable in natural speech to those of the corresponding note extracted from music scores, so as to narrow the gap between natural speech and singing voice. Experiments on DSing30 and Dali corpus show that the ALT system equipped with our PDAugment outperforms previous state-of-the-art systems by 5.9% and 18.1% WERs respectively, demonstrating the effectiveness of PDAugment for ALT.
A large and growing amount of speech content in real-life scenarios is being recorded on common consumer devices in uncontrolled environments, resulting in degraded speech quality. Transforming such low-quality device-degraded speech into high-qualit y speech is a goal of speech enhancement (SE). This paper introduces a new speech dataset, DDS, to facilitate the research on SE. DDS provides aligned parallel recordings of high-quality speech (recorded in professional studios) and a number
The global coronavirus pandemic overwhelmed many health care systems, enforcing lockdown and encouraged work from home to control the spread of the virus and prevent overrunning of hospitalized patients. This prompted a sharp widespread use of telehe alth to provide low-risk care for patients. Nevertheless, a continuous mutation into new variants and widespread unavailability of test kits, especially in developing countries, possess the challenge to control future potential waves of infection. In this paper, we propose a novel Smartphone application-based platform for early diagnosis of possible Covid-19 infected patients. The application provides three modes of diagnosis from possible symptoms, cough sound, and specific blood biomarkers. When a user chooses a particular setting and provides the necessary information, it sends the data to a trained machine learning (ML) model deployed in a remote server using the internet. The ML algorithm then predicts the possibility of contracting Covid-19 and sends the feedback to the user. The entire procedure takes place in real-time. Our machine learning models can identify Covid-19 patients with an accuracy of 100%, 95.65%, and 77.59% from blood parameters, cough sound, and symptoms respectively. Moreover, the ML sensitivity for blood and sound is 100%, which indicates correct identification of Covid positive patients. This is significant in limiting the spread of the virus. The multimodality offers multiplex diagnostic methods to better classify possible infectees and together with the instantaneous nature of our technique, demonstrates the power of telehealthcare as an easy and widespread low-cost scalable diagnostic solution for future pandemics.
167 - Wei Liu , Tan Lee 2021
Confidence measure is a performance index of particular importance for automatic speech recognition (ASR) systems deployed in real-world scenarios. In the present study, utterance-level neural confidence measure (NCM) in end-to-end automatic speech r ecognition (E2E ASR) is investigated. The E2E system adopts the joint CTC-attention Transformer architecture. The prediction of NCM is formulated as a task of binary classification, i.e., accept/reject the input utterance, based on a set of predictor features acquired during the ASR decoding process. The investigation is focused on evaluating and comparing the efficacies of predictor features that are derived from different internal and external modules of the E2E system. Experiments are carried out on children speech, for which state-of-the-art ASR systems show less than satisfactory performance and robust confidence measure is particularly useful. It is noted that predictor features related to acoustic information of speech play a more important role in estimating confidence measure than those related to linguistic information. N-best score features show significantly better performance than single-best ones. It has also been shown that the metrics of EER and AUC are not appropriate to evaluate the NCM of a mismatched ASR with significant performance gap.
Algorithmic harmonization - the automated harmonization of a musical piece given its melodic line - is a challenging problem that has garnered much interest from both music theorists and computer scientists. One genre of particular interest is the fo ur-part Baroque chorales of J.S. Bach. Methods for algorithmic chorale harmonization typically adopt a black-box, data-driven approach: they do not explicitly integrate principles from music theory but rely on a complex learning model trained with a large amount of chorale data. We propose instead a new harmonization model, called BacHMMachine, which employs a theory-driven framework guided by music composition principles, along with a data-driven model for learning compositional features within this framework. As its name suggests, BacHMMachine uses a novel Hidden Markov Model based on key and chord transitions, providing a probabilistic framework for learning key modulations and chordal progressions from a given melodic line. This allows for the generation of creative, yet musically coherent chorale harmonizations; integrating compositional principles allows for a much simpler model that results in vast decreases in computational burden and greater interpretability compared to state-of-the-art algorithmic harmonization methods, at no penalty to quality of harmonization or musicality. We demonstrate this improvement via comprehensive experiments and Turing tests comparing BacHMMachine to existing methods.
350 - Rami Botros 2021
Previous works on the Recurrent Neural Network-Transducer (RNN-T) models have shown that, under some conditions, it is possible to simplify its prediction network with little or no loss in recognition accuracy (arXiv:2003.07705 [eess.AS], [2], arXiv: 2012.06749 [cs.CL]). This is done by limiting the context size of previous labels and/or using a simpler architecture for its layers instead of LSTMs. The benefits of such changes include reduction in model size, faster inference and power savings, which are all useful for on-device applications. In this work, we study ways to make the RNN-T decoder (prediction network + joint network) smaller and faster without degradation in recognition performance. Our prediction network performs a simple weighted averaging of the input embeddings, and shares its embedding matrix weights with the joint networks output layer (a.k.a. weight tying, commonly used in language modeling arXiv:1611.01462 [cs.LG]). This simple design, when used in conjunction with additional Edit-based Minimum Bayes Risk (EMBR) training, reduces the RNN-T Decoder from 23M parameters to just 2M, without affecting word-error rate (WER).
394 - Keqi Deng , Songjun Cao , Long Ma 2021
Recently, self-supervised pre-training has gained success in automatic speech recognition (ASR). However, considering the difference between speech accents in real scenarios, how to identify accents and use accent features to improve ASR is still cha llenging. In this paper, we employ the self-supervised pre-training method for both accent identification and accented speech recognition tasks. For the former task, a standard deviation constraint loss (SDC-loss) based end-to-end (E2E) architecture is proposed to identify accents under the same language. As for accented speech recognition task, we design an accent-dependent ASR system, which can utilize additional accent input features. Furthermore, we propose a frame-level accent feature, which is extracted based on the proposed accent identification model and can be dynamically adjusted. We pre-train our models using 960 hours unlabeled LibriSpeech dataset and fine-tune them on AESRC2020 speech dataset. The experimental results show that our proposed accent-dependent ASR system is significantly ahead of the AESRC2020 baseline and achieves $6.5%$ relative word error rate (WER) reduction compared with our accent-independent ASR system.
Recently self-supervised learning has emerged as an effective approach to improve the performance of automatic speech recognition (ASR). Under such a framework, the neural network is usually pre-trained with massive unlabeled data and then fine-tuned with limited labeled data. However, the non-streaming architecture like bidirectional transformer is usually adopted by the neural network to achieve competitive results, which can not be used in streaming scenarios. In this paper, we mainly focus on improving the performance of streaming transformer under the self-supervised learning framework. Specifically, we propose a novel two-stage training method during fine-tuning, which combines knowledge distilling and self-training. The proposed training method achieves 16.3% relative word error rate (WER) reduction on Librispeech noisy test set. Finally, by only using the 100h clean subset of Librispeech as the labeled data and the rest (860h) as the unlabeled data, our streaming transformer based model obtains competitive WERs 3.5/8.7 on Librispeech clean/noisy test sets.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا