ﻻ يوجد ملخص باللغة العربية
Automatic lyrics transcription (ALT), which can be regarded as automatic speech recognition (ASR) on singing voice, is an interesting and practical topic in academia and industry. ALT has not been well developed mainly due to the dearth of paired singing voice and lyrics datasets for model training. Considering that there is a large amount of ASR training data, a straightforward method is to leverage ASR data to enhance ALT training. However, the improvement is marginal when training the ALT system directly with ASR data, because of the gap between the singing voice and standard speech data which is rooted in music-specific acoustic characteristics in singing voice. In this paper, we propose PDAugment, a data augmentation method that adjusts pitch and duration of speech at syllable level under the guidance of music scores to help ALT training. Specifically, we adjust the pitch and duration of each syllable in natural speech to those of the corresponding note extracted from music scores, so as to narrow the gap between natural speech and singing voice. Experiments on DSing30 and Dali corpus show that the ALT system equipped with our PDAugment outperforms previous state-of-the-art systems by 5.9% and 18.1% WERs respectively, demonstrating the effectiveness of PDAugment for ALT.
Background music affects lyrics intelligibility of singing vocals in a music piece. Automatic lyrics alignment and transcription in polyphonic music are challenging tasks because the singing vocals are corrupted by the background music. In this work,
Speech recognition is a well developed research field so that the current state of the art systems are being used in many applications in the software industry, yet as by today, there still does not exist such robust system for the recognition of wor
In this paper, we propose a text-to-speech (TTS)-driven data augmentation method for improving the quality of a non-autoregressive (AR) TTS system. Recently proposed non-AR models, such as FastSpeech 2, have successfully achieved fast speech synthesi
This paper makes several contributions to automatic lyrics transcription (ALT) research. Our main contribution is a novel variant of the Multistreaming Time-Delay Neural Network (MTDNN) architecture, called MSTRE-Net, which processes the temporal inf
Automatic recognition of disordered speech remains a highly challenging task to date. The underlying neuro-motor conditions, often compounded with co-occurring physical disabilities, lead to the difficulty in collecting large quantities of impaired s