ترغب بنشر مسار تعليمي؟ اضغط هنا

تعتمد منصات وسائل التواصل الاجتماعي عبر الإنترنت على نحو متزايد على تقنيات معالجة اللغة الطبيعية (NLP) للكشف عن محتوى مسيء على نطاق واسع من أجل تخفيف الأضرار التي يسببها لمستخدميها. ومع ذلك، فإن هذه التقنيات تعاني من مختلف تحيزات أخذ العينات والجمعية الموجودة في البيانات التدريبية، والتي غالبا ما تؤدي إلى أداء الفرعية على المحتوى ذي الصلة بالمجموعات المهمشة، مما يحتمل أن يؤدي إلى أضرار غير متناسبة تجاههم. ركزت دراسات حول مثل هذه التحيزات حتى الآن على حفنة فقط من محاور التباينات والمجموعات الفرعية التي تحتوي على التعليقات التوضيحية / المعجم المتاحة. وبالتالي، يتم تجاهل التحيزات المتعلقة بالسياقات غير الغربية إلى حد كبير في الأدبيات. في هذه الورقة، نقدم طريقة خاضعة للإشراف ضعيفا للكشف عن التحيزات المعجمية بقوة في السياقات الجغرافية الثقافية الأوسع نطاقا. من خلال دراسة الحالة حول نموذج كشف للسمية المتوفرة للجمهور، نوضح أن طريقتنا تحدد المجموعات البارزة من الأخطاء المتبادلة الجغرافية، وفي متابعة، توضح أن هذه التجمعات تعكس الأحكام الإنسانية من اللغة الهجومية واللغة الفعلية في تلك السياقات الجغرافية. نحن أيضا إجراء تحليل نموذج تدرب على مجموعة بيانات مع ملصقات الحقيقة الأرضية لفهم هذه التحيزات بشكل أفضل، وتقديم تجارب التخفيف الأولي.
الاكتشاف الموقف، الذي يهدف إلى تحديد ما إذا كان الفرد هو مفهوم مستهدف أو ضد الكشف عن الرأي العام من تدفقات بيانات وسائل التواصل الاجتماعي الكبيرة. ومع ذلك، فإن التعليق البشري لمحتوى وسائل التواصل الاجتماعي لا يستوفي دائما الموقف "" كما يقاس من خلال ا ستطلاعات الرأي العام. نوضح ذلك من خلال مقارنة موقف الفرد المبلغ عنها مباشرة إلى الموقف الذي استنتج من بيانات وسائل التواصل الاجتماعي الخاصة بهم. استفاد من استطلاع للرأي العام الطولي مع مقاعد Twitter المستفتى، أجرينا هذه المقارنة مع 1،129 فردا في أربع أهداف بارزة. نجد أن الاستدعاء مرتفعا لكل من تصنيفات الموقف المحترفين، ولكن الدقة متغير في عدد من الحالات. نحدد ثلاثة عوامل تؤدي إلى قطع الاتصال بين النص وموقف المؤلف: التناقضات الزمنية والاختلافات في البنيات وأخطاء القياس من كل من المشاركين في المسح والمعجبين. من خلال تقديم إطار لتقييم حدود نماذج الكشف عن الموقف، يوفر هذا العمل نظرة مهمة في الكشف عن الموقف حقا.
يستخدم استخدام اللغة بين المجالات وحتى داخل المجال، يتغير استخدام اللغة بمرور الوقت. بالنسبة لنماذج اللغة المدربة مسبقا مثل Bert، فقد ثبت أن تكييف المجال من خلال استمرار التدريب المستمر لتحسين الأداء في مهام Towstream داخل المجال. في هذه المقالة، يمك ننا التحقيق فيما إذا كان التكيف الزمني يمكن أن يجلب فوائد إضافية. لهذا الغرض، نقدم كذبة من وسائل التواصل الاجتماعي تعليقات عينات أكثر من ثلاث سنوات. أنه يحتوي على بيانات غير مسؤولة عن التكيف والتقييم على مهمة نمذجة لغة ملثم في المنبع بالإضافة إلى البيانات المسمى للضبط الدقيق والتقييم في مهمة تصنيف المستندات المصب. نجد أن هذه المهام في كل من المهام: التكيف الزمني يحسن أداء مهام المهام المصب والصقل الزمني الصخري. تؤدي النماذج الزمنية الخاصة عموما بشكل عام في الماضي عن مجموعات الاختبار المستقبلية، مما يطابق الأدلة على الاستخدام الدائر للكلمات الموضعية. ومع ذلك، لا يحسن تكييف Bert to Time & Domain الأداء على المهمة المصب على التكيف فقط إلى المجال. يوضح تحليل المستوى الرمز المميز أن التكيف الزمني يلتقط التغييرات التي يحركها الأحداث في استخدام اللغة في مهمة المصب، ولكن ليس هذه التغييرات ذات الصلة بالفعل بأداء المهام. بناء على النتائج التي توصلنا إليها، نناقش متى قد يكون التكيف الزمني أكثر فعالية.
مع شعبية عمر الإنترنت الحالي، قدمت المنصات الاجتماعية عبر الإنترنت جسر للتواصل بين الشركات الخاصة والمؤسسات العامة والجمهور.الغرض من هذا البحث هو فهم تجربة المستخدم للمنتج من خلال تحليل بيانات مراجعة المنتجات في حقول مختلفة.نقترح شبكة عصبية مقرها Bil stm والتي غزت المعلومات العاطفية الغنية.بالإضافة إلى النظر في التكافؤ والإثارة وهو أصغر المعلومات العاطفية، يتم دمج علاقة الاعتماد بين النصوص أيضا في نموذج التعلم العميق لتحليل المعنويات.تظهر النتائج التجريبية أن هذا البحث يمكن أن يحقق أداء جيدا في التنبؤ بمفردات التكافؤ والإثارة.بالإضافة إلى ذلك، يمكن أن يكون دمج معلومات VA والاعتماد في نموذج Bilstm أداء ممتاز لتحليل معنويات النص الاجتماعي، والذي يتحقق من أن هذا النموذج فعال في الاعتراف بالمشاعر النص الإنسي الاجتماعي الاجتماعي.
تصبح الصحة العقلية أكثر اهتماما مؤخرا مؤخرا، والاكتئاب كونه مرض شائع جدا في الوقت الحاضر، ولكن أيضا اضطرابات أخرى مثل القلق أو الاضطرابات القهرية الهوس أو اضطرابات التغذية أو اضطرابات نقص الانتباه / اضطرابات نقص الانتباه / فرط النشاط. توفر كمية كبيرة من البيانات من وسائل التواصل الاجتماعي والسلف الحديث لنماذج التعلم العميق وسيلة قيمة للكشف عن الاضطرابات النفسية تلقائيا من نص عادي. في هذه المقالة، نقوم بتجربة أساليب حديثة في مجموعة بيانات الصحة العقلية SMHD من Reddit (كوهان وآخرون، 2018). مساهمتنا ثلاثة أضعاف: استخدام مجموعة بيانات تتكون من المزيد من الأمراض أكثر من معظم الدراسات، مع التركيز على النص العام بدلا من مجموعات دعم الصحة العقلية والتصنيف من قبل الوظائف بدلا من الأفراد أو المجموعات. بالنسبة للتصنيف التلقائي للأمراض، فإننا نوظف ثلاث نماذج تعليمية عميقة: بيرت روبرتا و XLNet. نحن مضاعفة خط الأساس الذي أنشأه كوهان وآخرون. (2018)، على عينة فقط من مجموعة البيانات الخاصة بهم. نحن نحسن النتائج التي حصلت عليها جيانغ وآخرون. (2020) على تصنيف ما بعد المستوى. إن الدقة التي حصلت عليها مصنف اضطراب الأكل هو أعلى نظرا للوجود الحامل للمناقشات المتعلقة بالسعرات الحرارية والوجبات الغذائية والوصفات وما إلى ذلك، في حين أن الاكتئاب كان لديه أدنى درجة F1، ربما لأن الاكتئاب أكثر صعوبة في تحديد الأفعال اللغوية.
تعرض هذه الورقة تعدد الأبعاد التعدين على المحتوى الذي تم إنشاؤه من قبل المستخدم الذي تم جمعه من Newshires وخدمات الشبكات الاجتماعية بثلاث لغات مختلفة: اللغة الإنجليزية --- لغة عالية الموارد، المالطية --- لغة منخفضة الموارد، والالططية-الإنجليزية -- لغ ة تبديل الكود.العديد من طرازات لغة التصنيف العصبي المتعددة التي تلبي اللغات التي تلبيها اللغات الإنجليزية واللطاطية واللطاطية والإنجليزية وكذلك الثانية) خمسة أبعاد الرأي الاجتماعي المختلفة، وهي الذاتية، قطبية المعنويات، العاطفة والسخرية والسخرية، مقدمة.تتم مناقشة النتائج لكل نموذج تصنيف لكل البعد الاجتماعي.
مكنت الوصول الواسع من منصات وسائل التواصل الاجتماعي، مثل Twitter، العديد من المستخدمين من مشاركة أفكارهم وآرائهم وعواطفهم على مواضيع مختلفة عبر الإنترنت. سيسمح القدرة على الكشف عن هذه المشاعر تلقائيا العلماء الاجتماعيين، وكذلك الشركات التي يجب فهم ال ردود بشكل أفضل من الأمم والأزياء. في هذه الدراسة، نقدم مجموعة بيانات تتراوح بين 30،000 تغريدات فارسي تحمل مشاعر EKMAN الأساسية الستة (الغضب والخوف والسعادة والحزن والحزن والكراهية والعجب). هذه هي أول مجموعة بيانات العاطفة المتاحة للجمهور في اللغة الفارسية. في هذه الورقة، نوضح نظام جمع البيانات ووضع العلامات المستخدمة لإنشاء هذه البيانات. نقوم أيضا بتحليل مجموعة البيانات التي تم إنشاؤها، والتي تظهر ميزات وخصائص البيانات المختلفة. من بين أشياء أخرى، نحقق في حدوث مشاعر مختلفة في مجموعة البيانات، والعلاقة بين المعنويات والعاطفة الحالات النصية. تتوفر DataSet علنا ​​في https://github.com/nazaninsbr/persian-emotion-detection.
نظرا لأن النهج القائم على المعجم هو أكثر أناقة علميا، أوضح مكونات الحل وأسهل التعميم إلى التطبيقات الأخرى، توفر هذه الورقة نهجا جديدا للغة الهجومية والكشف عن الكلام على وسائل التواصل الاجتماعي، والتي تجسد معجم من الهجوم الضمني والبريثوإقتصار التعبيرا ت المشروح مع المعلومات السياقية.نظرا لشدة تعليقات وسائل التواصل الاجتماعي المسيئة في البرازيل، وعدم وجود أبحاث باللغة البرتغالية والبرتغالية البرازيلية هي اللغة المستخدمة للتحقق من صحة النماذج.ومع ذلك، قد يتم تطبيق طريقتنا على أي لغة أخرى.تظهر التجارب التي أجراها فعالية النهج المقترح، مما يتفوق على الأساليب الأساسية الحالية للغة البرتغالية.
في هذا العمل، نقدم تحليل جزء واسع النطاق لخطاب مستخدمي وسائل التواصل الاجتماعي مع الاكتئاب.كشفت الأبحاث في علم النفس أن المستخدمين الاكتئابين يميلون إلى أن يكونوا مركزة ذاتيا، أكثر انشغالا مع أنفسهم ويقومون بإعادة المزيد عن حياتهم وعواطفهم.يهدف عملنا إلى الاستفادة من مجموعات بيانات واسعة النطاق والأساليب الحسابية لاستكشاف خطابي كمي.نحن نستخدم مجموعة بيانات الاكتئاب المتاحة للجمهور من التنبؤ بالمخاطر المبكرة في ورشة عمل الإنترنت (ERISK) 2018 واستخراج ميزات جزء من الكلام والعديد من المؤشرات بناء عليها.تكشف نتائجنا عن فروق ذات دلالة إحصائية بين الأفراد الاكتئاب وغير الاكتئاب الذين يؤكدون النتائج من أدب علم النفس الحالي.يوفر عملنا نظرة ثاقبة فيما يتعلق بالطريقة التي يعبر فيها الأفراد الاكتئاب عن أنفسهم على منصات وسائل التواصل الاجتماعي، مما يتيح لنماذج حسابية على علم أفضل للمساعدة في مراقبة الأمراض العقلية ومنعها.
تعد خلط التعليمات البرمجية (CM) ظاهرة ملحوظة في كثير من الأحيان تستخدم لغات متعددة في الكلام أو الجملة. لا توجد قيود نحوية صارمة لاحظت في خلط التعليمات البرمجية، وتتألف من أشكال الإملاء غير القياسية. إن التعقيد اللغوي الناتج عن العوامل المذكورة أعلاه جعل التحليل الحسابي للغة المختلطة من التعليمات البرمجية مهمة صعبة. تعد تحديد الهوية اللغوية (LI) وجزء الكلام (POS) الخطوات الأساسية التي تساعد في تحليل هيكل النص المختلط من التعليمات البرمجية. في كثير من الأحيان، تعتبر مهام وضع العلامات LI و POS في سيناريو خلط التعليمات البرمجية. نحن نعلم مشكلة التعامل مع تعدد اللغات والهيكل النحوي أثناء تحليل الجملة المختلطة من التعليمات البرمجية باعتبارها مهمة تعليمية مشتركة. في هذه الورقة، قمنا بالتعاون بشكل مشترك وتحسين اكتشاف اللغة وجزء من نماذج وضع علامات الكلام في السيناريو المختلط من التعليمات البرمجية. استخدمنا محول مع بنية الشبكة العصبية التنافعية. نحن ندرب طريقة التعلم المشترك من خلال الجمع بين طرامات نقاط البيع ونماذج LI على نص الوسائط الاجتماعية المختلطة من التعليمات البرمجية التي تم الحصول عليها من المهمة المشتركة أيقونة.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا