ترغب بنشر مسار تعليمي؟ اضغط هنا

يهدف كتابة كيان الرسم البياني للمعرفة إلى أن ينتج أنواع الكيانات المفقودة في الرسوم البيانية المعرفة التي تعد قضية مهمة ولكنها غير مستحقة.تقترح هذه الورقة طريقة رواية لهذه المهمة من خلال الاستفادة من المعلومات السياقية للكيانات.على وجه التحديد، نقوم بتصميم آليات الاستدلال: I) N2T: استخدام كل جار كل جار بشكل مستقل لاستنتاج نوعه؛2) AGG2T: إجمالي جيران كيان لاستنتاج نوعها.ستنتج هذه الآليات نتائج الاستدلال المتعددة، وتستخدم طريقة تجميع مضاعفة بشكل كبير لتوليد نتيجة الاستدلال النهائي.علاوة على ذلك، نقترح وظيفة خسارة جديدة لتخفيف المشكلة السلبية الخاطئة أثناء التدريب.تجارب على اثنين من كلغ العالم الحقيقي توضح فعالية طريقتنا.يمكن الحصول على شفرة المصدر وبيانات هذه الورقة من https://github.com/cciiplab/cet.
تهدف استخراج العلاقات الزمنية الفائقة (FINETEMPRL) إلى الاعتراف بتذكير فترات الزمن والجدول الزمني في النص.جزء مفقود في نماذج التعلم العميقة الحالية ل Finetemprel هو فشلهم في استغلال الهياكل النحوية لجمل المدخلات لإثراء ناقلات التمثيل.في هذا العمل، نق ترح ملء هذه الفجوة من خلال إدخال طرق جديدة لإدماج الهياكل النحوية في نماذج التعلم العميق ل Finetemprel.يركز النموذج المقترح على نوعين من المعلومات النحوية من أشجار التبعية، أي عشرات الأهمية التي تستند إلى بناء الجملة لتعلم تمثيل الكلمات والاتصالات النحوية لتحديد كلمات السياق الهامة لذكر الحدث.نقدم أيضا تقنيات جديدة لتسهيل نقل المعرفة بين المهام الفرعية في Finetempr، مما يؤدي إلى نموذج جديد مع الأداء الحديث لهذه المهمة.
تستخدم مصطلح خطط الترجغ على نطاق واسع في معالجة اللغة الطبيعية واسترجاع المعلومات. على وجه الخصوص، فإن وزن المصطلح هو الأساس لاستخراج الكلمات الرئيسية. ومع ذلك، هناك عدد قليل نسبيا دراسات التقييم التي ألقت الضوء على نقاط القوة وأوجه القصور في كل مخطط للتوازن. في الواقع، في معظم الحالات، يلجأ الباحثون والممارسون في معظم الحالات إلى TF-IDF المعروفة بشكل افتراضي، على الرغم من وجود بدائل أخرى مناسبة، بما في ذلك النماذج القائمة على الرسم البياني. في هذه الورقة، نقوم بإجراء مقارنة تجريبية وشاملة واسعة النطاق من كل من أساليب الترجيح الإحصائية والرصاص القائمة على الرسم البياني في سياق استخراج الكلمات الرئيسية. يكشف تحليلنا عن بعض النتائج المثيرة للاهتمام مثل مزايا الخصوصية المعروفة الأقل شهرة فيما يتعلق ب TF-IDF، أو الاختلافات النوعية بين الأساليب الإحصائية والرصاص القائمة على الرسم البياني. وأخيرا، بناء على نتائجنا نناقشها واستنباد بعض الاقتراحات للممارسين. تعد شفرة المصدر لإعادة إنتاج نتائجنا التجريبية، بما في ذلك مكتبة استخراج الكلمات الرئيسية، متوفرة في المستودع التالي: https://github.com/asahi417/kex
لقد أظهرت الأدوات الحديثة الأخيرة أن نماذج تعلم الرسم البياني المعرفي (KG) عرضة للغاية للهجمات الخصومة.ومع ذلك، لا تزال هناك ندرة من تحليلات الضعف لمحاذاة الكيان المتبادلة تحت هجمات الخصومة.تقترح هذه الورقة نموذج هجوم مخدر مع تقنيات هجومين جديدة لإشر اض هيكل كجم وتدلل جودة محاذاة الكيان المتبادلة العميقة.أولا، يتم استخدام طريقة تعظيم كثافة الكيان لإخفاء الكيانات المهاجمة في المناطق الكثيفة في كلكتين، بحيث تكون الاضطرابات المشتقة غير ملحوظة.ثانيا، تم تطوير طريقة تضخيم إشارة الهجوم لتقليل مشاكل التلاشي التجريبية في عملية الهجمات الخصومة لمزيد من تحسين فعالية الهجوم.
يفهم فهم الوسيلة اللغوية على نطاق واسع بنفس أهمية مهام المصب مثل الإجابة على السؤال ورسم الرسم البياني المعرفي.قد يتوقع أيضا الاستفادة من التعلم الرسم البياني الاستيباري من الاهتمام بالطريقة.نقوم ببناء الرسوم البيانية الاستيبارية باستخدام Corpus News التي تمت تصفيتها مع محلل طريقة، وإظهار أن معدلات تجريد مشروط من المسندات في الواقع تزيد الأداء.هذا يشير إلى أنه بالنسبة لبعض المهام، فإن البراغماتية لتعديل مشروط للندوات يسمح لهم بالمساهمة كدليل على الاستلام.
في تصنيف النص عبر اللغات، يطلب من أن البيانات التدريبية الخاصة بمهام المهام في لغات مصدر عالية الموارد متوفرة، حيث تكون المهمة مطابقة لتلك لغة مستهدفة منخفضة الموارد. ومع ذلك، يمكن أن يكون جمع هذه البيانات التدريبية غير ممكنة بسبب تكلفة العلامات وخصا ئص المهام ومخاوف الخصوصية. تقترح هذه الورقة حل بديل يستخدم فقط تضييق كلمة مهمة من المهام لغات الموارد عالية الموارد وقواميس ثنائية اللغة. أولا، نبني رسم بياني غير متجانس (DHG) من القواميس ثنائية اللغة. هذا يفتح إمكانية استخدام الشبكات العصبية الرسم البيانية للتحويل عبر اللغات. التحدي المتبقي هو عدم تجانس DHG لأنه يتم النظر في لغات متعددة. لمعالجة هذا التحدي، نقترح شبكة عصبية غير متجانسة مقرها القاموس (Dhgnet) التي تعالج بفعالية عدم تجانس DHG بشكل فعال بمقدار تجميعتين، وهي مجامعات على مستوى الكلمة ومستوى اللغة. توضح النتائج التجريبية أن أسلوبنا تفوق النماذج المحددة على الرغم من أنها لا تصل إلى كورسا كبيرة. علاوة على ذلك، يمكن أن يؤدي ذلك بشكل جيد على الرغم من أن القواميس تحتوي على العديد من الترجمات غير الصحيحة. تتيح قوتها لاستخدام مجموعة واسعة من القواميس مثل القاموس المصنوع تلقائيا وقاموس التعيد الجماعي، وهو أمر مناسب لتطبيقات العالم الحقيقي.
توفر التفاعلات بين الكيانات في الرسم البياني للمعرفة (KG) معرفة غنية لتعلم تمثيل اللغة. ومع ذلك، تركز نماذج اللغة المحددة على المعرفة المعزوفة المعرفة الحالية (PLMS) فقط على معلومات الكيان وتجاهل العلاقات الجميلة بين الكيانات. في هذا العمل، نقترح دمج كجم (بما في ذلك كلا من الكيانات والعلاقات) في عملية التعلم اللغوي للحصول على نموذج اللغة المحسنة KG، وهي KLMO. على وجه التحديد، تم تصميم مجمع المعرفة الرواية للنموذج صراحة التفاعل بين الكيان يمتد في النص وجميع الكيانات والعلاقات في كجم سياقي. يتم استخدام هدف تنبؤ العلاقة لدمج معلومات العلاقة من خلال الإشراف البعيد. يتم استخدام هدف ربط الكيان بشكل أكبر لربط كيان يمتد في نص إلى كيانات في كجم. وبهذه الطريقة، يمكن دمج المعرفة المهيكلة بشكل فعال في تمثيلات اللغة. توضح النتائج التجريبية أن KLMO يحقق تحسينات كبيرة على العديد من المهام التي يحركها المعرفة، مثل تصنيف الكيانات وتصنيف العلاقة، مقارنة مع PLMs المعرفة المعززة للحكومة.
في حين أن مجموعات بيانات الإجابة على الأسئلة المتنوعة (QA) اقترحت وساهمت بشكل كبير في تطوير نماذج التعلم العميق لمهام ضمان الجودة، فإن البيانات الحالية تقصر في جوانبين. أولا، نفتقر إلى مجموعات بيانات ضمان الجودة التي تغطي الأسئلة المعقدة التي تنطوي ع لى إجابات بالإضافة إلى عمليات التفكير للحصول عليها. نتيجة لذلك، لا تزال أبحاث ضمنيا في ضمان الجودة العددية تركز على حسابات بسيطة ولا توفر التعبيرات الرياضية أو الأدلة التي تبرر الإجابات. ثانيا، ساهم مجتمع ضمان الجودة في الكثير من الجهد لتحسين إمكانية تفسير نماذج QA. ومع ذلك، فإنهم يفشلون في إظهار عملية التفكير صراحة، مثل أمر الأدلة من أجل التفكير والتفاعلات بين الأدلة المختلفة. لمعالجة العيب المذكور أعلاه، نقدم Noahqa ومجموعة بيانات QA محادثة وثنائية اللغة مع أسئلة تتطلب التفكير العددي مع التعبيرات الرياضية المركبة. مع Noahqa، نقوم بتطوير رسم بياني لتفكير قابل للتفسير بالإضافة إلى متري التقييم المناسب لقياس جودة الإجابة. نقوم بتقييم حديثة نماذج ضمان الجودة المدربة باستخدام مجموعات بيانات QA الحالية على Noahqa وإظهار أن الأفضل من بينها يمكن فقط تحقيق 55.5 عشر درجات مطابقة محددة، في حين أن الأداء البشري هو 89.7. نقدم أيضا نموذجا جديدا في ضمان الجودة لتوليد رسم بياني للمنطق حيث لا يزال متري الرسم البياني للمنطق فجوة كبيرة مقارنة بمركبات البشر، على سبيل المثال، 28 درجات.
يسمح دفتر Jupyter لعلماء البيانات كتابة رمز تعلم الآلة مع وثائقها في الخلايا.في هذه الورقة، نقترح مهمة جديدة من توليد وثائق التعليمات البرمجية (CDG) لأجهزة الكمبيوتر المحمولة الحسابية.على النقيض من مهام CDG السابقة التي تركز على توليد وثائق لفظات شفر ة واحدة، في دفتر ملاحظات حسابي، غالبا ما يتوافق وثائق في خلية في خلية تخطيطية مع خلايا التعليمات البرمجية المتعددة، ولديها خلايا التعليمات البرمجية هذه هيكل متأصل.اقترحنا نموذجا جديدا (Haconvgnn) الذي يستخدم آلية اهتمام هرمي للنظر في خلايا التعليمات البرمجية ذات الصلة ومعلومات الرموز التعليمية ذات الصلة عند إنشاء الوثائق.تم اختباره على كوربوس جديد تم إنشاؤه من أجهزة كمبيوتر دفاتر Kaggle موثقة جيدا، نظرا لأن نموذجنا يفوق النماذج الأساسية الأخرى.
تعد التصنيفات موارد قيمة للعديد من التطبيقات، ولكن التغطية المحدودة بسبب عملية العمالة اليدوية باهظة الثمن تعوق إمكانية تطبيقها العام. محاولة Works السابقة لتوسيع تصنيفات الأدتصات الموجودة تلقائيا لتحسين تغطيتها من خلال تضمين التعلم بمشاركة مفهوم في الفضاء الإقليدية، في حين أن التصنيفات، التسلسل الهرمي بطبيعتها، محاذاة بشكل طبيعي مع الخصائص الهندسية للفضاء القطعي. في هذه الورقة، نقدم HyperExpan، خوارزمية توسيع تصنيفية تسعى إلى الحفاظ على هيكل التصنيف في مساحة أكثر تعبيرا معبرة وتتعلم أن تمثل المفاهيم وعلاقاتها مع شبكة عصبية خاطئة (HGNN). على وجه التحديد، ترفع Hyperexpan تضمينات الموضع لاستغلال هيكل التصنيفات الموجودة، وتميز معلومات ملف تعريف المفهوم لدعم الاستدلال على مفاهيم جديدة غير مرئية أثناء التدريب. تشير التجارب إلى أن Hyperexpan المقترح تفوق النماذج الأساسية بنماذج أساسية مع التعلم التمثيلي في مساحة ميزة Euclidean وتحقق أداء حديثة على معايير التوسع التصنيفية.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا