ترغب بنشر مسار تعليمي؟ اضغط هنا

503 - Zeng-hui Yang 2021
We derive the second-order approximation (PT2) to the ensemble correlation energy functional by applying the G{o}rling-Levy perturbation theory on the ensemble density-functional theory (EDFT). Its performance is checked by calculating excitation ene rgies with the direct ensemble correction method in 1D model systems and 3D atoms using numerically exact Kohn-Sham orbitals and potentials. Comparing with the exchange-only approximation, the inclusion of the ensemble PT2 correlation improves the excitation energies in 1D model systems in most cases, including double excitations and charge-transfer excitations. However, the excitation energies for atoms are generally worse with PT2. We find that the failure of PT2 in atoms is due to the two contributions of an orbital-dependent functional to excitation energies being inconsistent in the calculations. We also analyze the convergence of PT2 excitation energies with respect to the number of unoccupied orbitals.
Most oscillating reactions (ORs) happen in solutions. Few existing solid-based ORs either happen on solid/gas (e.g., oxidation or corrosion) or solid/liquid interfaces, or at the all-solid interfaces neighboring to metals or ionic conductors (e.g., e lectrolysis or electroplate). We report in this paper a new type of all-solid based OR that happens at the insulator (amorphous SiO$_2$)/semiconductor (Si) interface with the interfacial point defects as the oscillating species. This OR is the first example of the point-defect coupled ORs (PDC-ORs) proposed by H. Schmalzried et al. and J. Janek et al. decades ago. We use proton implantation as the driving force of the oscillation, and employ techniques common in semiconductor device characterization to monitor the oscillation in situ. This approach not only overcomes the difficulties associated with detecting reactions in solids, but also accurately measure the oscillating ultra-low concentration ($10^{10}sim10^{11}$ cm$^{-2}$) of the interfacial charged point-defects. We propose a mechanism for the reported PDC-OR based on the Brusselator model by identifying the interfacial reactions.
The Perdew-Zunger self-interaction correction cures many common problems associated with semilocal density functionals, but suffers from a size-extensivity problem when Kohn-Sham orbitals are used in the correction. Fermi-L{o}wdin-orbital self-intera ction correction (FLOSIC) solves the size-extensivity problem, allowing its use in periodic systems and resulting in better accuracy in finite systems. Although the previously published FLOSIC algorithm [J. Chem. Phys. 140, 121103 (2014)] appears to work well in many cases, it is not fully self-consistent. This would be particularly problematic for systems where the occupied manifold is strongly changed by the correction. In this paper we demonstrate a new algorithm for FLOSIC to achieve full self-consistency with only marginal increase of computational cost. The resulting total energies are found to be lower than previously reported non-self-consistent results.
A very specific ensemble of ground and excited states is shown to yield an exact formula for any excitation energy as a simple correction to the energy difference between orbitals of the Kohn-Sham ground state. This alternative scheme avoids either t he need to calculate many unoccupied levels as in time-dependent density functional theory (TDDFT) or the need for many self-consistent ensemble calculations. The symmetry-eigenstate Hartree-exchange (SEHX) approximation yields results comparable to standard TDDFT for atoms. With this formalism, SEHX yields approximate double-excitations, which are missed by adiabatic TDDFT.
Unlike the local density approximation (LDA) and the generalized gradient approximation (GGA), calculations with meta-generalized gradient approximations (meta-GGA) are usually done according to the generalized Kohn-Sham (gKS) formalism. The exchange -correlation potential of the gKS equation is non-multiplicative, which prevents systematic comparison of meta-GGA bandstructures to those of the LDA and the GGA. We implement the optimized effective potential (OEP) of the meta-GGA for periodic systems, which allows us to carry out meta-GGA calculations in the same KS manner as for the LDA and the GGA. We apply the OEP to several meta-GGAs, including the new SCAN functional [Phys. Rev. Lett. 115, 036402 (2015)]. We find that the KS gaps and KS band structures of meta-GGAs are close to those of GGAs. They are smaller than the more realistic gKS gaps of meta-GGAs, but probably close to the less-realistic gaps in the band structure of the exact KS potential, as can be seen by comparing with the gaps of the EXX+RPA OEP potential. The well-known grid sensitivity of meta-GGAs is much more severe in OEP calculations.
We construct exact Kohn-Sham potentials for the ensemble density-functional theory (EDFT) from the ground and excited states of helium. The exchange-correlation (XC) potential is compared with the quasi-local-density approximation and both single det erminant and symmetry eigenstate ghost-corrected exact exchange approximations. Symmetry eigenstate Hartree-exchange recovers distinctive features of the exact XC potential and is used to calculate the correlation potential. Unlike the exact case, excitation energies calculated from these approximations depend on ensemble weight, and it is shown that only the symmetry eigenstate method produces an ensemble derivative discontinuity. Differences in asymptotic and near-ground-state behavior of exact and approximate XC potentials are discussed in the context of producing accurate optical gaps.
In the usual treatment of electronic structure, all matter has cusps in the electronic density at nuclei. Cusps can produce non-analytic behavior in time, even in response to perturbations that are time-analytic. We analyze these non-analyticities in a simple case from many perspectives. We describe a method, the s-expansion, that can be used in several such cases, and illustrate it with a variety of examples. These include both the sudden appearance of electric fields and disappearance of nuclei, in both one and three dimensions. When successful, the s-expansion yields the dominant short-time behavior, no matter how strong the external electric field, but agrees with linear response theory in the weak limit. We discuss the relevance of these results to time-dependent density functional theory.
This paper discusses the benefits of object-oriented programming to scientific computing, using our recent calculations of exciton binding energies with time-dependent density-functional theory (arXiv: 1302.6972) as a case study. We find that an obje ct-oriented approach greatly facilitates the development, the debugging, and the future extension of the code by promoting code reusing. We show that parallelism is added easily in our code in a object-oriented fashion with ScaLAPACK, Boost::MPI and OpenMP.
Excitons are electron-hole pairs appearing below the band gap in insulators and semiconductors. They are vital to photovoltaics, but are hard to obtain with time-dependent density-functional theory (TDDFT), since most standard exchange-correlation (x c) functionals lack the proper long-range behavior. Furthermore, optical spectra of bulk solids calculated with TDDFT often lack the required resolution to distinguish discrete, weakly bound excitons from the continuum. We adapt the Casida equation formalism for molecular excitations to periodic solids, which allows us to obtain exciton binding energies directly. We calculate exciton binding energies for both small- and large-gap semiconductors and insulators, study the recently proposed bootstrap xc kernel [S. Sharma et al., Phys. Rev. Lett. 107, 186401 (2011)], and extend the formalism to triplet excitons.
The accurate description of the optical spectra of insulators and semiconductors remains an important challenge for time-dependent density-functional theory (TDDFT). Evidence has been given in the literature that TDDFT can produce bound as well as co ntinuum excitons for specific systems, but there are still many unresolved basic questions concerning the role of dynamical exchange and correlation (xc). In particular, the role of the long spatial range and the frequency dependence of the xc kernel $f_{rm xc}$ for excitonic binding are still not very well explored. We present a minimal model for excitons in TDDFT, consisting of two bands from a one-dimensional Kronig-Penney model and simple approximate xc kernels, which allows us to address these questions in a transparent manner. Depending on the system, it is found that adiabatic xc kernels can produce a single bound exciton, and sometimes two bound excitons, where the long spatial range of $f_{rm xc}$ is not a necessary condition. It is shown how the Wannier model, featuring an effective electron-hole interaction, emerges from TDDFT. The collective, many-body nature of excitons is explicitly demonstrated.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا