ترغب بنشر مسار تعليمي؟ اضغط هنا

Application of object-oriented programming in a time-dependent density-functional theory calculation of exciton binding energies

281   0   0.0 ( 0 )
 نشر من قبل Zenghui Yang
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper discusses the benefits of object-oriented programming to scientific computing, using our recent calculations of exciton binding energies with time-dependent density-functional theory (arXiv: 1302.6972) as a case study. We find that an object-oriented approach greatly facilitates the development, the debugging, and the future extension of the code by promoting code reusing. We show that parallelism is added easily in our code in a object-oriented fashion with ScaLAPACK, Boost::MPI and OpenMP.



قيم البحث

اقرأ أيضاً

Excitons are electron-hole pairs appearing below the band gap in insulators and semiconductors. They are vital to photovoltaics, but are hard to obtain with time-dependent density-functional theory (TDDFT), since most standard exchange-correlation (x c) functionals lack the proper long-range behavior. Furthermore, optical spectra of bulk solids calculated with TDDFT often lack the required resolution to distinguish discrete, weakly bound excitons from the continuum. We adapt the Casida equation formalism for molecular excitations to periodic solids, which allows us to obtain exciton binding energies directly. We calculate exciton binding energies for both small- and large-gap semiconductors and insulators, study the recently proposed bootstrap xc kernel [S. Sharma et al., Phys. Rev. Lett. 107, 186401 (2011)], and extend the formalism to triplet excitons.
Reliable and robust convergence to the electronic ground state within density functional theory (DFT) Kohn-Sham (KS) calculations remains a thorny issue in many systems of interest. In such cases, charge sloshing can delay or completely hinder the co nvergence. Here, we use an approach based on transforming the time-dependent DFT equations to imaginary time, followed by imaginary-time evolution, as a reliable alternative to the self-consistent field (SCF) procedure for determining the KS ground state. We discuss the theoretical and technical aspects of this approach and show that the KS ground state should be expected to be the long-imaginary-time output of the evolution, independent of the exchange-correlation functional or the level of theory used to simulate the system. By maintaining self-consistency between the single-particle wavefunctions and the electronic density throughout the determination of the stationary state, our method avoids the typical difficulties encountered in SCF. To demonstrate dependability of our approach, we apply it to selected systems which struggle to converge with SCF schemes. In addition, through the van Leeuwen theorem, we affirm the physical meaningfulness of imaginary time TDDFT, justifying its use in certain topics of statistical mechanics such as in computing imaginary time path integrals.
Imaginary-time time-dependent Density functional theory (it-TDDFT) has been proposed as an alternative method for obtaining the ground state within density functional theory (DFT) which avoids some of the difficulties with convergence encountered by the self-consistent-field (SCF) iterative method. It-TDDFT was previously applied to clusters of atoms where it was demonstrated to converge in select cases where SCF had difficulty with convergence. In the present work we implement it-TDDFT propagation for {it periodic systems} by modifying the Quantum ESPRESSO package, which uses a plane-wave basis with multiple $boldsymbol{k}$ points, and has the options of non-collinear and DFT+U calculations using ultra-soft or norm-conserving pseudo potentials. We demonstrate that our implementation of it-TDDFT propagation with multiple $boldsymbol{k}$ points is correct for DFT+U non-collinear calculations and for DFT+U calculations with ultra-soft pseudo potentials. Our implementation of it-TDDFT propagation converges to the exact SCF energy (up to the decimal guaranteed by double precision) in all but one case where it converged to a slightly lower value than SCF, suggesting a useful alternative for systems where SCF has difficulty to reach the Kohn-Sham ground state. In addition, we demonstrate that rapid convergence can be achieved if we use adaptive-size imaginary-time-steps for different kinetic-energy plane-waves.
Real-time time-dependent density functional theory (rt-TDDFT) with hybrid exchange-correlation functional has wide-ranging applications in chemistry and material science simulations. However, it can be thousands of times more expensive than a convent ional ground state DFT simulation, hence is limited to small systems. In this paper, we accelerate hybrid functional rt-TDDFT calculations using the parallel transport gauge formalism, and the GPU implementation on Summit. Our implementation can efficiently scale to 786 GPUs for a large system with 1536 silicon atoms, and the wall clock time is only 1.5 hours per femtosecond. This unprecedented speed enables the simulation of large systems with more than 1000 atoms using rt-TDDFT and hybrid functional.
We analyze possible nonlinear exciton-exciton correlation effects in the optical response of semiconductors by using a time-dependent density-functional theory (TDDFT) approach. For this purpose, we derive the nonlinear (third-order) TDDFT equation f or the excitonic polarization. In this equation, the nonlinear time-dependent effects are described by the time-dependent (non-adiabatic) part of the effective exciton-exciton interaction, which depends on the exchange-correlation (XC) kernel. We apply the approach to study the nonlinear optical response of a GaAs quantum well. In particular, we calculate the 2D Fourier spectra of the system and compare it with experimental data. We find that it is necessary to use a non-adiabatic XC kernel to describe excitonic bound states - biexcitons, which are formed due to the retarded TDDFT exciton-exciton interaction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا