ترغب بنشر مسار تعليمي؟ اضغط هنا

More-Realistic Band Gaps from Meta-Generalized Gradient Approximations: Only in a Generalized Kohn-Sham Scheme

83   0   0.0 ( 0 )
 نشر من قبل Zenghui Yang
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Unlike the local density approximation (LDA) and the generalized gradient approximation (GGA), calculations with meta-generalized gradient approximations (meta-GGA) are usually done according to the generalized Kohn-Sham (gKS) formalism. The exchange-correlation potential of the gKS equation is non-multiplicative, which prevents systematic comparison of meta-GGA bandstructures to those of the LDA and the GGA. We implement the optimized effective potential (OEP) of the meta-GGA for periodic systems, which allows us to carry out meta-GGA calculations in the same KS manner as for the LDA and the GGA. We apply the OEP to several meta-GGAs, including the new SCAN functional [Phys. Rev. Lett. 115, 036402 (2015)]. We find that the KS gaps and KS band structures of meta-GGAs are close to those of GGAs. They are smaller than the more realistic gKS gaps of meta-GGAs, but probably close to the less-realistic gaps in the band structure of the exact KS potential, as can be seen by comparing with the gaps of the EXX+RPA OEP potential. The well-known grid sensitivity of meta-GGAs is much more severe in OEP calculations.



قيم البحث

اقرأ أيضاً

A detailed account of the Kohn-Sham algorithm from quantum chemistry, formulated rigorously in the very general setting of convex analysis on Banach spaces, is given here. Starting from a Levy-Lieb-type functional, its convex and lower semi-continuou s extension is regularized to obtain differentiability. This extra layer allows to rigorously introduce, in contrast to the common unregularized approach, a well-defined Kohn-Sham iteration scheme. Convergence in a weak sense is then proven. This generalized formulation is applicable to a wide range of different density-functional theories and possibly even to models outside of quantum mechanics.
In this work we introduce a new semi-implicit second order correction scheme to the kinetic Kohn-Sham lattice model. The new approach is validated by performing realistic exchange-correlation energy calculations of atoms and dimers of the first two r ows of the periodic table finding good agreement with the expected values. Additionally we simulate the ethane molecule where we recover the bond lengths and compare the results with standard methods. Finally, we discuss the current applicability of pseudopotentials within the lattice kinetic Kohn-Sham approach.
The recently proposed rSCAN functional [J. Chem. Phys. 150, 161101 (2019)] is a regularized form of the SCAN functional [Phys. Rev. Lett. 115, 036402 (2015)] that improves SCANs numerical performance at the expense of breaking constraints known from the exact exchange-correlation functional. We construct a new meta-generalized gradient approximation by restoring exact constraint adherence to rSCAN. The resulting functional maintains rSCANs numerical performance while restoring the transferable accuracy of SCAN.
We model a Kohn-Sham potential with a discontinuity at integer particle numbers derived from the GLLB approximation of Gritsenko et al. We evaluate the Kohn-Sham gap and the discontinuity to obtain the quasiparticle gap. This allows us to compare the Kohn-Sham gaps to those obtained by accurate many-body perturbation theory based optimized potential methods. In addition, the resulting quasiparticle band gap is compared to experimental gaps. In the GLLB model potential, the exchange-correlation hole is modeled using a GGA energy density and the response of the hole to density variations is evaluated by using the common-denominator approximation and homogeneous electron gas based assumptions. In our modification, we have chosen the PBEsol potential as the GGA to model the exchange hole, and add a consistent correlation potential. The method is implemented in the GPAW code, which allows efficient parallelization to study large systems. A fair agreement for Kohn-Sham and the quasiparticle band gaps with semiconductors and other band gap materials is obtained with a potential which is as fast as GGA to calculate.
We present a rigorous formulation of generalized Kohn-Sham density-functional theory. This provides a straightforward Kohn-Sham description of many-body systems based not only on particle-density but also on any other observable. We illustrate the fo rmalism for the case of a particle-density based description of a nonrelativistic many-electron system. We obtain a simple diagrammatic expansion of the exchange-correlation functional in terms of Kohn-Sham single-particle orbitals and energies; develop systematic Kohn-Sham formulation for one-electron propagators and many-body excitation energies. This work is ideally suited for practical applications and provides a rigorous basis for a systematic development of the existing body of first-principles calculations in a controllable fashion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا