ترغب بنشر مسار تعليمي؟ اضغط هنا

81 - Yoshitake Sakae 2015
We combined the genetic crossover, which is one of the operations of genetic algorithm, and replica-exchange method in parallel molecular dynamics simulations. The genetic crossover and replica-exchange method can search the global conformational spa ce by exchanging the corresponding parts between a pair of conformations of a protein. In this study, we applied this method to an $alpha$-helical protein, Trp-cage mini protein, which has 20 amino-acid residues. The conformations obtained from the simulations are in good agreement with the experimental results.
413 - Yoshitake Sakae 2015
Many proteins carry out their biological functions by forming the characteristic tertiary structures. Therefore, the search of the stable states of proteins by molecular simulations is important to understand their functions and stabilities. However, getting the stable state by conformational search is difficult, because the energy landscape of the system is characterized by many local minima separated by high energy barriers. In order to overcome this difficulty, various sampling and optimization methods for conformations of proteins have been proposed. In this study, we propose a new conformational search method for proteins by using genetic crossover and Metropolis criterion. We applied this method to an $alpha$-helical protein. The conformations obtained from the simulations are in good agreement with the experimental results.
71 - Ryo Urano , 2014
We propose an improved prediction method of the tertiary structures of $alpha$-helical membrane proteins based on the replica-exchange method by taking into account helix deformations. Our method allows wide applications because transmembrane helices of native membrane proteins are often distorted. In order to test the effectiveness of the present method, we applied it to the structure predictions of glycophorin A and phospholamban. The results were in accord with experiments.
Many commonly used force fields for protein systems such as AMBER, CHARMM, GROMACS, OPLS, and ECEPP have amino-acid-independent force-field parameters of main-chain torsion-energy terms. Here, we propose a new type of amino-acid-dependent torsion-ene rgy terms in the force fields. As an example, we applied this approach to AMBER ff03 force field and determined new amino-acid-dependent parameters for $psi$ and $psi$ angles for each amino acid by using our optimization method, which is one of the knowledge-based approach. In order to test the validity of the new force-field parameters, we then performed folding simulations of $alpha$-helical and $beta$-hairpin peptides, using the optimized force field. The results showed that the new force-field parameters gave structures more consistent with the experimental implications than the original AMBER ff03 force field.
A new simulated tempering method, which is referred to as simulated tempering umbrella sampling, for calculating the free energy of chemical reactions is proposed. First principles molecular dynamics simulations with this simulated tempering were per formed in order to study the intramolecular proton transfer reaction of malonaldehyde in aqueous solution. Conformational sampling in reaction coordinate space can be easily enhanced with this method, and the free energy along a reaction coordinate can be calculated accurately. Moreover, the simulated tempering umbrella sampling provides trajectory data more efficiently than the conventional umbrella sampling method.
60 - Ayori Mitsutake 2010
In biomolecular systems (especially all-atom models) with many degrees of freedom such as proteins and nucleic acids, there exist an astronomically large number of local-minimum-energy states. Conventional simulations in the canonical ensemble are of little use, because they tend to get trapped in states of these energy local minima. Enhanced conformational sampling techniques are thus in great demand. A simulation in generalized ensemble performs a random walk in potential energy space and can overcome this difficulty. From only one simulation run, one can obtain canonical-ensemble averages of physical quantities as functions of temperature by the single-histogram and/or multiple-histogram reweighting techniques. In this article we review uses of the generalized-ensemble algorithms in biomolecular systems. Three well-known methods, namely, multicanonical algorithm, simulated tempering, and replica-exchange method, are described first. Both Monte Carlo and molecular dynami
We present generalized-ensemble algorithms for isobaric-isothermal molecular simulations. In addition to the multibaric-multithermal algorithm and replica-exchange method for the isobaric-isothermal ensemble, which have already been proposed, we prop ose a simulated tempering method for this ensemble. We performed molecular dynamics simulations with these algorithms for an alanine dipeptide system in explicit water molecules to test the effectiveness of the algorithms. We found that these generalized-ensemble algorithms are all useful for conformational sampling of biomolecular systems in the isobaric-isothermal ensemble.
In the replica-exchange molecular dynamics method, where constant-temperature molecular dynamics simulations are performed in each replica, one usually rescales the momentum of each particle after replica exchange. This rescaling method had previousl y been worked out only for the Gaussian constraint method. In this letter, we present momentum rescaling formulae for four other commonly used constant-temperature algorithms, namely, Langevin dynamics, Andersen algorithm, Nos{e}-Hoover thermostat, and Nos{e}-Poincar{e} thermostat. The effectiveness of these rescaling methods is tested with a small biomolecular system, and it is shown that proper momentum rescaling is necessary to obtain correct results in the canonical ensemble.
We present a new type of the Hamiltonian replica-exchange method, in which not temperatures but the van der Waals radius parameter is exchanged. By decreasing the van der Waals radii that control spatial sizes of atoms, this Hamiltonian replica-excha nge method overcomes the steric restrictions and energy barriers. Furthermore, the simulation based on this method escapes from the local-minimum free-energy states and realizes effective sampling in the conformational space. We applied this method to an alanine dipeptide in aqueous solution and showed the effectiveness of the method by comparing the results with those obtained from the conventional canonical method.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا