ترغب بنشر مسار تعليمي؟ اضغط هنا

Replica-Exchange Molecular Dynamics Simulations for Various Constant Temperature Algorithms

142   0   0.0 ( 0 )
 نشر من قبل Yuko Okamoto
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the replica-exchange molecular dynamics method, where constant-temperature molecular dynamics simulations are performed in each replica, one usually rescales the momentum of each particle after replica exchange. This rescaling method had previously been worked out only for the Gaussian constraint method. In this letter, we present momentum rescaling formulae for four other commonly used constant-temperature algorithms, namely, Langevin dynamics, Andersen algorithm, Nos{e}-Hoover thermostat, and Nos{e}-Poincar{e} thermostat. The effectiveness of these rescaling methods is tested with a small biomolecular system, and it is shown that proper momentum rescaling is necessary to obtain correct results in the canonical ensemble.



قيم البحث

اقرأ أيضاً

We discuss the use of a Langevin equation with a colored (correlated) noise to perform constant-temperature molecular dynamics simulations. Since the equations of motion are linear in nature, it is easy to predict the response of a Hamiltonian system to such a thermostat and to tune at will the relaxation time of modes of different frequency. This allows one to optimize the time needed to thermalize the system and generate independent configurations. We show how this frequency-dependent response can be exploited to control the temperature of Car-Parrinello-like dynamics, keeping at low temperature the electronic degrees of freedom, without affecting the adiabatic separation from the vibrations of the ions.
Efficient computational methods that are capable of supporting experimental measures obtained at constant values of pH and redox potential are important tools as they serve to, among other things, provide additional atomic level information that cann ot be obtained experimentally. Replica Exchange is an enhanced sampling technique that allows converged results to be obtained faster in comparison to regular molecular dynamics simulations. In this work we report the implementation, also available with GPU-accelerated code, of pH and redox potential (E) as options for multidimensional REMD simulations in AMBER. Previous publications have only reported multidimensional REMD simulations with the temperature and Hamiltonian dimensions. In this work results are shown for N-acetylmicroperoxidase-8 (NAcMP8) axially connected to a histidine peptide. This is a small system that contains only a single heme group. We compare results from E,pH-REMD, E,T-REMD and E,T,pH-REMD to one dimensional REMD simulations and to simulations without REMD. We show that 2D-REMD simulations improve sampling convergence in comparison to 1D-REMD simulations, and that 3D-REMD further improves convergence in comparison to 2D-REMD simulations. Also, our computational benchmarks show that our multidimensional REMD calculations have a small and bearable computational performance, essentially the same as one dimensional REMD. However, in multidimensional REMD a significantly higher number of replicas is required as the number of replicas scales geometrically with the number of dimensions, which requires additional computational resources. In addition to the pH dependence on standard redox potential values and the redox potential dependence on pKa values,we also investigate the influence of the temperature in our results. We observe an agreement between our computational results and theoretical predictions.
We develop a novel method of replica-exchange molecular dynamics (REMD) simulation, mass-scaling REMD (MSREMD) method, which improves trajectory accuracy at high temperatures, and thereby contributes to numerical stability. In addition, the MSREMD me thod can also simplify a replica-exchange routine by eliminating velocity scaling. As a pilot system, a Lennard-Jones fluid is simulated with the new method. The results show that the MSREMD method improves the trajectory accuracy at high temperatures compared with the conventional REMD method. We analytically demonstrate that the MSREMD simulations can reproduce completely the same trajectories of the conventional REMD ones with shorter time steps at high temperatures in case of the Nose-Hoover thermostats. Accordingly, we can easily compare the computational costs of the REMD and MSREMD simulations. We conclude that the MSREMD method decreases the instability and optimizes the computational resources with simpler algorithm under the constant trajectory accuracy at all temperatures.
175 - Ryo Urano , Yuko Okamoto 2015
We propose a new implementation of the replica-exchange method (REM) in which replicas follow a pre-planned route in temperature space instead of a random walk. Our method satisfies the detailed balance condition in the proposed route. The method for ces tunneling events between the highest and lowest temperatures to happen with an almost constant period. The number of tunneling counts is proportional to that of the random-walk REM multiplied by the square root of moving distance in temperature space. We applied this new implementation to two kinds of REM and compared the results with those of the conventional random-walk REM. The test system was a two-dimensional Ising model, and our new method reproduced the results of the conventional random-walk REM and improved the tunneling counts by three times or more than that of the random-walk REM.
We propose a new method for the determination of the weight factor for the simulated tempering method. In this method a short replica-exchange simulation is performed and the simulated tempering weight factor is obtained by the multiple-histogram rew eighting techniques. The new algorithm is particularly useful for studying frustrated systems with rough energy landscape where the determination of the simulated tempering weight factor by the usual iterative process becomes very difficult. The effectiveness of the method is illustrated by taking an example for protein folding.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا