ترغب بنشر مسار تعليمي؟ اضغط هنا

76 - Volker Springel 2008
Dark matter is the dominant form of matter in the universe, but its nature is unknown. It is plausibly an elementary particle, perhaps the lightest supersymmetric partner of known particle species. In this case, annihilation of dark matter in the hal o of the Milky Way should produce gamma-rays at a level which may soon be observable. Previous work has argued that the annihilation signal will be dominated by emission from very small clumps (perhaps smaller even than the Earth) which would be most easily detected where they cluster together in the dark matter halos of dwarf satellite galaxies. Here we show, using the largest ever simulation of the formation of a galactic halo, that such small-scale structure will, in fact, have a negligible impact on dark matter detectability. Rather, the dominant and likely most easily detectable signal will be produced by diffuse dark matter in the main halo of the Milky Way. If the main halo is strongly detected, then small dark matter clumps should also be visible, but may well contain no stars, thereby confirming a key prediction of the Cold Dark Matter (CDM) model.
293 - Volker Springel 2008
We have performed the largest ever particle simulation of a Milky Way-sized dark matter halo, and present the most comprehensive convergence study for an individual dark matter halo carried out thus far. We have also simulated a sample of 6 ultra-hig hly resolved Milky-way sized halos, allowing us to estimate the halo-to-halo scatter in substructure statistics. In our largest simulation, we resolve nearly 300,000 gravitationally bound subhalos within the virialized region of the halo. Simulations of the same object differing in mass resolution by factors up to 1800 accurately reproduce the largest subhalos with the same mass, maximum circular velocity and position, and yield good convergence for the abundance and internal properties of dark matter substructures. We detect up to four generations of subhalos within subhalos, but contrary to recent claims, we find less substructure in subhalos than in the main halo when regions of equal mean overdensity are compared. The overall substructure mass fraction is much lower in subhalos than in the main halo. Extrapolating the main halos subhalo mass spectrum down to an Earth mass, we predict the mass fraction in substructure to be well below 3% within 100 kpc, and to be below 0.1% within the Solar Circle. The inner density profiles of subhalos show no sign of converging to a fixed asymptotic slope and are well fit by gently curving profiles of Einasto form. The mean concentrations of isolated halos are accurately described by the fitting formula of Neto et al. down to maximum circular velocities of 1.5 km/s, an extrapolation over some 5 orders of magnitude in mass. However, at equal maximum circular velocity, subhalos are more concentrated than field halos, with a characteristic density that is typically ~2.6 times larger and increases towards the halo centre.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا