ترغب بنشر مسار تعليمي؟ اضغط هنا

A blueprint for detecting supersymmetric dark matter in the Galactic halo

113   0   0.0 ( 0 )
 نشر من قبل Volker Springel
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Volker Springel




اسأل ChatGPT حول البحث

Dark matter is the dominant form of matter in the universe, but its nature is unknown. It is plausibly an elementary particle, perhaps the lightest supersymmetric partner of known particle species. In this case, annihilation of dark matter in the halo of the Milky Way should produce gamma-rays at a level which may soon be observable. Previous work has argued that the annihilation signal will be dominated by emission from very small clumps (perhaps smaller even than the Earth) which would be most easily detected where they cluster together in the dark matter halos of dwarf satellite galaxies. Here we show, using the largest ever simulation of the formation of a galactic halo, that such small-scale structure will, in fact, have a negligible impact on dark matter detectability. Rather, the dominant and likely most easily detectable signal will be produced by diffuse dark matter in the main halo of the Milky Way. If the main halo is strongly detected, then small dark matter clumps should also be visible, but may well contain no stars, thereby confirming a key prediction of the Cold Dark Matter (CDM) model.



قيم البحث

اقرأ أيضاً

Assuming the dark matter halo of the Milky Way as a non-spherical potential (i.e. triaxial, prolate, oblate), we show how the assembling process of the Milky Way halo, may have left long lasting stellar halo kinematic fossils only due to the shape of the dark matter halo. In contrast with tidal streams, associated with recent satellite accretion events, these stellar kinematic groups will typically show inhomogeneous chemical and stellar population properties. However, they may be dominated by a single accretion event for certain mass assembling histories. If the detection of these peculiar kinematic stellar groups is confirmed, they would be the smoking gun for the predicted triaxiality of dark halos in cosmological galaxy formation scenarios.
The High Altitude Water Cherenkov (HAWC) gamma-ray observatory is a wide field-of-view observatory sensitive to 500 GeV - 100 TeV gamma rays and cosmic rays. With its observations over 2/3 of the sky every day, the HAWC observatory is sensitive to a wide variety of astrophysical sources, including possible gamma rays from dark matter. Dark matter annihilation and decay in the Milky Way Galaxy should produce gamma-ray signals across many degrees on the sky. The HAWC instantaneous field-of-view of 2 sr enables observations of extended regions on the sky, such as those from dark matter in the Galactic halo. Here we show limits on the dark matter annihilation cross-section and decay lifetime from HAWC observations of the Galactic halo with 15 months of data. These are some of the most robust limits on TeV and PeV dark matter, largely insensitive to the dark matter morphology. These limits begin to constrain models in which PeV IceCube neutrinos are explained by dark matter which primarily decays into hadrons.
Recent studies have presented evidence that the Milky Way global potential may be nonspherical. In this case, the assembling process of the Galaxy may have left long lasting stellar halo kinematic fossils due to the shape of the dark matter halo, pot entially originated by orbital resonances. We further investigate such possibility, considering now potential models further away from $Lambda$CDM halos, like scalar field dark matter halos, MOND, and including several other factors that may mimic the emergence and permanence of kinematic groups, such as, a spherical and triaxial halo with an embedded disk potential. We find that regardless of the density profile (DM nature), kinematic groups only appear in the presence of a triaxial halo potential. For the case of a MOND like gravity theory no kinematic structure is present. We conclude that the detection of these kinematic stellar groups could confirm the predicted triaxiality of dark halos in cosmological galaxy formation scenarios.
Neutrino oscillations are a widely observed and well established phenomenon. It is also well known that deviations with respect to flavor conversion probabilities in vacuum arise due to neutrino interactions with matter. In this work, we analyze the impact of new interactions between neutrinos and the dark matter present in the Milky Way on the neutrino oscillation pattern. The dark matter-neutrino interaction is modeled by using an effective coupling proportional to the Fermi constant $G_F$ with no further restrictions on its flavor structure. For the galactic dark matter profile we consider an homogeneous distribution as well as several density profiles, estimating in all cases the size of the interaction required to get an observable effect at different neutrino energies. Our discussion is mainly focused in the PeV neutrino energy range, to be explored in observatories like IceCube and KM3NeT. The obtained results may be interpreted in terms of a light $mathcal{O}$(sub-eV--keV) or WIMP-like dark matter particle or as a new interaction with a mediator of $mathcal{O}$(sub-eV--keV) mass.
132 - R. A. Lineros 2017
The observation of PeV neutrinos is an open window to study New Physics processes. Among all possible neutrino observables, the neutrino flavor composition can reveal underlying interactions during the neutrino propagation. We study the effects on ne utrino oscillations of dark matter-neutrino interactions. We estimate the size of the interaction strength to produce a sizable deviation with respect to the flavor composition from oscillations in vacuum. We found that the dark matter distribution produces flavor compositions non reproducible by other New Physics phenomena. Besides, the dark matter effect predicts flavor compositions which depend on the neutrinos arrival direction. This feature might be observed in neutrino telescopes like IceCube and KM3NET with access to different sky sections. This effect presents a novel way to test Dark Matter particle models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا