ترغب بنشر مسار تعليمي؟ اضغط هنا

The Aquarius Project: the subhalos of galactic halos

409   0   0.0 ( 0 )
 نشر من قبل Volker Springel
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Volker Springel




اسأل ChatGPT حول البحث

We have performed the largest ever particle simulation of a Milky Way-sized dark matter halo, and present the most comprehensive convergence study for an individual dark matter halo carried out thus far. We have also simulated a sample of 6 ultra-highly resolved Milky-way sized halos, allowing us to estimate the halo-to-halo scatter in substructure statistics. In our largest simulation, we resolve nearly 300,000 gravitationally bound subhalos within the virialized region of the halo. Simulations of the same object differing in mass resolution by factors up to 1800 accurately reproduce the largest subhalos with the same mass, maximum circular velocity and position, and yield good convergence for the abundance and internal properties of dark matter substructures. We detect up to four generations of subhalos within subhalos, but contrary to recent claims, we find less substructure in subhalos than in the main halo when regions of equal mean overdensity are compared. The overall substructure mass fraction is much lower in subhalos than in the main halo. Extrapolating the main halos subhalo mass spectrum down to an Earth mass, we predict the mass fraction in substructure to be well below 3% within 100 kpc, and to be below 0.1% within the Solar Circle. The inner density profiles of subhalos show no sign of converging to a fixed asymptotic slope and are well fit by gently curving profiles of Einasto form. The mean concentrations of isolated halos are accurately described by the fitting formula of Neto et al. down to maximum circular velocities of 1.5 km/s, an extrapolation over some 5 orders of magnitude in mass. However, at equal maximum circular velocity, subhalos are more concentrated than field halos, with a characteristic density that is typically ~2.6 times larger and increases towards the halo centre.



قيم البحث

اقرأ أيضاً

286 - Tsafrir S. Kolatt 2000
[Abridged] The interaction rates of dark-matter halos and subhalos, are computed using high-resolution cosmological N-body simulations of the Lambda-CDM model. Although the number fraction of subhalos of mass $>2x10^{11}hsolmass$ is only ~10%, we fin d that the interaction rate of such subhalos is relatively high because they reside in high density environments. At low redshift, the subhalo collisions dominate the total collision rate, and even at z=3 they are involved in more than 30% of all collisions. About 40% of the major mergers are between subhalos. Therefore subhalo interactions must be incorporated in models of structure formation. We find that the collision rate between halos in physical density units, is $propto (1+z)^delta $, with $delta = 3-4$, in agreement with earlier simulations and most observational data. We test previous analytic estimates of the interaction rates of subhalos based on statistical models, which could be very inaccurate because of the small number of subhalos and the variation of conditions within small host halos. We find that, while such statistical estimates may severely overestimate the rate within hosts $< 10^{13} hsolmass$, typical of high redshifts, they are valid for larger hosts regardless of the number of subhalos in them. We find the Makino & Hut (1997) estimate of the subhalo merger rate to be valid for hosts $ > 6x10^{11}hsolmass$ at all redshifts. The collision rate between subhalos and the central object of their host halo is approximated relatively well using the timescale for dynamical friction in circular orbits. This approximation fails in ~40% of the cases, partly because of deviations from the assumption of circular orbits and partly because of the invalidity of the assumption that the subhalo mass is negligible.
We present an abundance analysis of six member stars of the recently discovered Aquarius stream, in an attempt to ascertain whether this halo stream is real and, if so, to understand its origin. The mean metallicities of the six stars have a dispersi on of only 0.10 dex, indicating that they are part of a chemically coherent structure. We then investigate whether the stream represents the debris of a disrupted dwarf galaxy or a disrupted globular cluster. The [Ni/Fe] - [Na/Fe] plane provides a good diagnostic: globular cluster stars and dwarf spheroidal galaxy stars are well separated in this plane, and the Aquarius stream stars lie unambiguously in the globular cluster region. The Aquarius stream stars also lie on the distinct [Na/Fe] - [O/Fe] and [Mg/Fe] - [Al/Fe] relations delineated by Galactic globular cluster stars. Spectroscopic parameters for the six Aquarius stars show that they are tightly confined to a 12 Gyr, [Fe/H] = -1.0, alpha-enhanced isochrone, consistent with their identification as globular cluster debris. We present evidence that the Aquarius stream may continue through the disk and out into the northern halo. Our results indicate a globular cluster origin for the Aquarius stream, and demonstrate the potential for chemical tagging to identify the origins of Galactic substructures.
We identify a new, nearby (0.5 < d < 10 kpc) stream in data from the RAdial Velocity Experiment (RAVE). As the majority of stars in the stream lie in the constellation of Aquarius we name it the Aquarius Stream. We identify 15 members of the stream l ying between 30 < l < 75 and -70< b <-50, with heliocentric line-of-sight velocities V_los~-200 km/s. The members are outliers in the radial velocity distribution, and the overdensity is statistically significant when compared to mock samples created with both the Besanc{c}on Galaxy model and newly-developed code Galaxia. The metallicity distribution function and isochrone fit in the log g - T_eff plane suggest the stream consists of a 10 Gyr old population with [m/H]~-1.0. We explore relations to other streams and substructures, finding the stream cannot be identified with known structures: it is a new, nearby substructure in the Galaxys halo. Using a simple dynamical model of a dissolving satellite galaxy we account for the localization of the stream. We find that the stream is dynamically young and therefore likely the debris of a recently disrupted dwarf galaxy or globular cluster. The Aquarius stream is thus a specimen of ongoing hierarchical Galaxy formation, rare for being right in the solar suburb.
We used FUSE to observe ultraviolet emission from diffuse O VI in the hot gas in the Galactic halo. By comparing our result with another, nearby observation blocked by an opaque cloud at a distance of 230 pc, we could subtract off the contribution fr om the Local Bubble, leading to an apparent halo intensity of I_{OVI} = 4680^{+570}_{-660} photons/cm^2/s/sr. A correction for foreground extinction leads to an intrinsic intensity that could be as much as twice this value. Assuming T ~ 3 x 10^5 K, we conclude that the electron density, n_e, is 0.01-0.02 /cm^3, the thermal pressure, p/k, is 7000-10,000 K/cm^3, and that the hot gas is spread over a length of 50-70 pc, implying a small filling factor for O VI-rich gas. ROSAT observations of emission at 1/4 keV in the same direction indicate that the X-rays are weaker by a factor of 1.1 to 4.7, depending on the foreground extinction. Simulated supernova remnants evolving in low density gas have similar O VI to X-ray ratios when the remnant plasma is approaching collisional ioinizational equilibrium and the physical structures are approaching dynamical ``middle age. Alternatively, the plasma can be described by a temperature power-law. Assuming that the material is approximately isobaric and the length scales according to T^(beta) d(ln T), we find beta = 1.5+/-0.6 and an upper temperature cutoff of 10^{6.6(+0.3,-0.2)} K. The radiative cooling rate for the hot gas, including that which is too hot to hold O VI, is 6 x 10^{38} erg/s/kpc^2. This rate implies that ~70% of the energy produced in the disk and halo by SN and pre-SN winds is radiated by the hot gas in the halo.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا