ترغب بنشر مسار تعليمي؟ اضغط هنا

95 - A. Pivano , V. O. Dolocan 2015
The interaction between transverse magnetic domain walls (TDWs) in planar (2D) and cylindrical (3D) nanowires is examined using micromagnetic simulations. We show that in perfect and surface deformed wires the free TDWs behave differently, as the 3D TDWs combine into metastable states with average lifetimes of 300ns depending on roughness, while the 2D TDWs do not due to 2D shape anisotropy. When the 2D and 3D TDWs are pinned at artificial constrictions, they behave similarly as they interact mainly through the dipolar field. This magnetostatic interaction is well described by the point charge model with multipole expansion. In surface deformed wires with artificial constrictions, the interaction becomes more complex as the depinning field decreases and dynamical pinning can lead to local resonances. This can strongly influence the control of TDWs in DW-based devices.
130 - Voicu O. Dolocan 2015
Interactions between pairs of magnetic domain walls (DW) and pinning by radial constrictions were studied in cylindrical nanowires with surface roughness. It was found that a radial constriction creates a symmetric pinning potential well, with a chan ge of slope when the DW is situated outside the notch. Surface deformation induces an asymmetry in the pinning potential as well as dynamical pinning. The depinning fields of the domain walls were found generally to decrease with increasing surface roughness. A DW pinned at a radial constriction creates a pinning potential well for a free DW in a parallel wire. We determined that trapped bound DW states appear above the depinning threshold and that the surface roughness facilitates the trapped bound DW states in parallel wires.
By using a Hamiltonian based on the coupling through flux lines, we have calculated the interaction energy between two fermions via massless bosons as well as via massive particles. In the case of interaction via massless bosons we obtain an equivale nt expression for the Coulombs energy on the form, where is the fine structure constant. In the case of the interaction via massive particles we obtain that the interaction energy contains a term building the potential well. Taking into account the spin-spin interaction of the nucleons, we show that this interaction modulates the interaction potential through a cosine factor. The obtained results are in good agreement with experimental data, for example, of deuteron.
100 - Voicu O. Dolocan 2013
We study the formation and control of metastable states of pairs of domain walls in cylindrical nanowires of small diameter where the transverse walls are the lower energy state. We show that these pairs form bound states under certain conditions, wi th a lifetime as long as 200ns, and are stabilized by the influence of a spin polarized current. Their stability is analyzed with a model based on the magnetostatic interaction and by 3D micromagnetic simulations. The apparition of bound states could hinder the operation of devices.
43 - Voicu Dolocan 2013
We have calculated the total energy of the helium atom in higher excited state. The Coulomb and exchange integrals are evaluated via spherical harmonics. The interaction of the magnetic moments of the electrons between them and also with the magnetic moments of the nucleus was taken into account through a cosine term in the Coulomb potential. The obtained results are in agreement with experimental data.
78 - Voicu O. Dolocan 2012
The interaction between a spin polarized dc electrical current and spin wave modes of a cylindrical nanowire is investigated in this report. We found that close to the critical current, the uniform mode is suppressed, while the edge mode starts to pr opagate into the sample. When the current exceeds the critical value, this phenomenon is even more accentuated. The edge mode becomes the uniform mode of the nanowire. The higher spin wave modes are slowly pushed away by the current until the propagating mode remains.
190 - V. Dolocan , V. O. Dolocan 2012
In this work we present a model for the determination of the interaction energy for triplet and singlet states in atoms with incomplete filled shells. Our model includes the modification of the Coulombs law by the interaction between the magnetic mom ents of the electrons and a Heisenberg term. We find that the energy of the triplet state is lower than the energy of the singlet state. We calculate the interaction energy between the electrons from the adjacent atoms in fcc and bcc lattices and we find that the minimum interaction energy is attained for the triplet state. The result is presented for the interaction between the electrons of the first coordination group. The interaction energy which aligns the spins is used to evaluate the Curie temperature in a mean field model. Compared to previous models, our simple model fits the experimental data.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا