ﻻ يوجد ملخص باللغة العربية
We study the formation and control of metastable states of pairs of domain walls in cylindrical nanowires of small diameter where the transverse walls are the lower energy state. We show that these pairs form bound states under certain conditions, with a lifetime as long as 200ns, and are stabilized by the influence of a spin polarized current. Their stability is analyzed with a model based on the magnetostatic interaction and by 3D micromagnetic simulations. The apparition of bound states could hinder the operation of devices.
It is well established that the spin-orbit interaction in heavy metal/ferromagnet heterostructures leads to a significant interfacial Dzyaloshinskii-Moriya Interaction (DMI) that modifies the internal structure of magnetic domain walls (DWs) to favor
The nonlinear dynamics of a transverse domain wall (TDW) in Permalloy and Nickel nanostrips with two artificially patterned pinning centers is studied numerically up to rf frequencies. The phase diagram frequency - driving amplitude shows a rich vari
Cylindrical nanowires made of soft magnetic materials, in contrast to thin strips, may host domain walls of two distinct topologies. Unexpectedly, we evidence experimentally the dynamic transformation of topology upon wall motion above a field thresh
The pinning effect of the periodic diameter modulations on the domain wall propagation in FeCoCu individual nanowires is determined by Magnetic Force Microscopy, MFM. A main bistable magnetic configuration is firstly concluded from MFM images charact
We investigate the magnetization dynamics in circular Permalloy dots with spatially separated magnetic vortices interconnected by domain walls (double vortex state). We identify a novel type of quasi one-dimensional (1D) localised spin wave modes con