ترغب بنشر مسار تعليمي؟ اضغط هنا

Coexistence of antiferromagnetic order with superconductivity in many families of newly discovered iron-based superconductors has renewed interest to this old problem. Due to competition between the two types of order, one can expect appearance of th e antiferromagnetism inside the cores of the vortices generated by the external magnetic field. The structure of a vortex in type II superconductors holds significant importance from the theoretical and the application points of view. Here we consider the internal vortex structure in a two-band s$_pm$ superconductor near a spin-density-wave instability. We treat the problem in a completely self-consistent manner within the quasiclassical Eilenberger formalism. We study the structure of the s$_pm$ superconducting order and magnetic field-induced spin-density-wave order near an isolated vortex. We examine the effect of this spin-density-wave state inside the vortex cores on the local density of states.
469 - Vivek Mishra , M. R. Norman 2015
Charge order has emerged as a generic feature of doped cuprates, leading to important questions about its origin and its relation to superconductivity. Recent experiments on two classes of hole doped cuprates indicate a novel d-wave symmetry for the order. These were motivated by earlier spin fluctuation theoretical studies based on an expansion about hot spots in the Brillouin zone that indicated such order would be competitive with d-wave superconductivity. Here, we reexamine this problem by solving strong coupling equations in the full Brillouin zone. Our results find that bond-oriented order, as seen experimentally, is strongly suppressed, indicating that the charge order must have a different origin.
One of the most intriguing aspects of cuprates is a large pseudogap coexisting with a high superconducting transition temperature. Here, we study pairing in the cuprates from electron-electron interactions by constructing the pair vertex using spectr al functions derived from angle resolved photoemission data for a near optimal doped Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ sample that has a pronounced pseudogap. Assuming that that the pseudogap is {it not} due to pairing, we find that the superconducting instability is strongly suppressed, in stark contrast to what is actually observed. Using an analytic approximation for the spectral functions, we can trace this suppression to the destruction of the BCS logarithmic singularity from a combination of the pseudogap and lifetime broadening. Our findings strongly support those theories of the cuprates where the pseudogap is instead due to pairing.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا