ﻻ يوجد ملخص باللغة العربية
One of the most intriguing aspects of cuprates is a large pseudogap coexisting with a high superconducting transition temperature. Here, we study pairing in the cuprates from electron-electron interactions by constructing the pair vertex using spectral functions derived from angle resolved photoemission data for a near optimal doped Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ sample that has a pronounced pseudogap. Assuming that that the pseudogap is {it not} due to pairing, we find that the superconducting instability is strongly suppressed, in stark contrast to what is actually observed. Using an analytic approximation for the spectral functions, we can trace this suppression to the destruction of the BCS logarithmic singularity from a combination of the pseudogap and lifetime broadening. Our findings strongly support those theories of the cuprates where the pseudogap is instead due to pairing.
The penetration depth is calculated over the entire doping range of the cuprate phase diagram with emphasis on the underdoped regime. Pseudogap formation on approaching the Mott transition, for doping below a quantum critical point, is described with
It is argued that the unusual non-states-conserving fermion density of states, deduced from the specific heat of several families of hole-doped cuprates, points towards interpretations of the pseudogap based on the suppression of a Kondo or heavy fer
We use the Nernst effect to delineate the boundary of the pseudogap phase in the temperature-doping phase diagram of cuprate superconductors. New data for the Nernst coefficient $ u(T)$ of YBa$_{2}$Cu$_{3}$O$_{y}$ (YBCO), La$_{1.8-x}$Eu$_{0.2}$Sr$_x$
The nature of the pseudogap phase of cuprates remains a major puzzle. One of its new signatures is a large negative thermal Hall conductivity $kappa_{rm xy}$, which appears for dopings $p$ below the pseudogap critical doping $p^*$, but whose origin i
Reconstruction of the Fermi surface of high-temperature superconducting cuprates in the pseudogap state is analyzed within nearly exactly solvable model of the pseudogap state, induced by short-range order fluctuations of antiferromagnetic (AFM, spin