ترغب بنشر مسار تعليمي؟ اضغط هنا

It is known that the Arrhenius equation, based on the Boltzmann distribution, can model only a part (e.g. half of the activation energy) for retinal discrete dark noise observed for vertebrate rod and cone pigments. Luo et al (Science, 332, 1307-312, 2011) presented a new approach to explain this discrepancy by showing that applying the Hinshelwood distribution instead the Boltzmann distribution in the Arrhenius equation solves the problem successfully. However, a careful reanalysis of the methodology and results shows that the approach of Luo et al is questionable and the results found do not solve the problem completely.
It has been suggested that quantum coherence in the selectivity filter of ion channel may play a key role in fast conduction and selectivity of ions. However, it has not been clearly elucidated yet why classical coherence is not sufficient for this p urpose. In this paper, we investigate the classical vibrational coherence between carbonyl groups oscillations in the selectivity filter of KcsA ion channels based on the data obtained from molecular dynamics simulations. Our results show that classical coherence plays no effective role in fast ionic conduction.
One of the answers to the measurement problem in quantum theory is given by the Copenhagen-Interpretation of quantum theory (i.e. orthodox quantum theory) in which the wave function collapse happens in (by) the mind of observer. In fact, at first, gr eat scientists like Von Neumann, London, Bauer and Wigner (initially) believed that the wave function collapse occurs in the brain or is caused by the consciousness of observer. However, this issue has been stayed yet very controversial. In fact, there are many challenging discussions about the survival of quantum effects in microscopic structures of the human brain, which is mainly because of quick decoherence of quantum states due to hot, wet and noisy environment of the brain that forbids long life coherence for brain processing. Nevertheless, there are also several arguments and evidences that emergence of large coherent states is feasible in the brain. In this paper, our approach is based on the latter in which macroscopic quantum states are probable in the human brain. Here, we simulate the delayed luminescence of photons in neurons with a Brassard-like teleportation circuit, i.e. equivalent to the transfer of quantum states of photons through the visual pathways from retina to the visual cortex. Indeed, our simulation considers both classical and quantum mechanical aspects of processing in neurons. As a result and based on our simulation, it is possible for our brain to receive the exact quantum states of photons in the visual cortex to be collapsed by our consciousness, which supports the Copenhagen-Interpretation of measurement problem in quantum theory.
In addition to chemical and mechanical interactions between cells electromagnetic field produced by cells has been considered as another form of signaling for cell-cell communication. The aim of this study is evaluation of electromagnetic effects on viability of Adipose-derived stem cells (ADSCs) without co-culturing. In this study, stem cells were isolated from human adipose tissue enzymatically and proliferated in monolayer culture. Then, 5.(10^4) adipose-derived stem cells were cultured in each well of the test plate. In the first row (4 wells), ADSCs as inducer cells were cultured in DMEM1 with 10 ng/ml Fibroblast growth factor (FGF). In adjacent and the last rows, ADSCs were cultured without FGF (as detector cells). After the three and five days the viability of cells were evaluated. Moreover, ADSCs were cultured in the same conditions but the inducer cells were placed once in the UV-filter tube and once in the quartz tube to see whether there is electromagnetic interaction among cells. Inducer cells caused significant cell proliferation in adjacent row cells (p- value<0.01) in the fifth day. However, using the UV-filter tube and quartz tube both reduced the effect of inducer cells on adjacent cells significantly. As a conclusion, we could detect distant cellular interaction (DCI) among adipose derived stem cells (ADSCs), but it was not electromagnetic signaling. Our results show that ADSCs affect each other via volatile signaling as a chemical distant cellular interaction (CDCI).
The Hodgkin-Huxley (HH) model is a powerful model to explain different aspects of spike generation in excitable cells. However, the HH model was proposed in 1952 when the real structure of the ion channel was unknown. It is now common knowledge that in many ion-channel proteins the flow of ions through the pore is governed by a gate, comprising a so-called selectivity filter inside the ion channel, which can be controlled by electrical interactions. The selectivity filter is believed to be responsible for the selection and fast conduction of particular ions across the membrane of an excitable cell. Other (generally larger) parts of the molecule such as the pore-domain gate control the access of ions to the channel protein. In fact, two types of gates are considered here for ion channels: the external gate, which is the voltage sensitive gate, and the internal gate which is the selectivity filter gate (SFG). Some quantum effects are to expected in the SFG due to its small dimensions, which may play an important role in the operation of an ion channel. Here, we examine parameters in a generalized model of HH to see whether any parameter affects the spike generation. Our results indicate that the previously suggested semi-quantum-classical equation proposed by Bernroider and Summhammer (BS) agrees strongly with the HH equation under different conditions and may even provide a better explanation in some cases. We conclude that the BS model can refine the classical HH model substantially.
155 - I. Bokkon , R.L.P. Vimal , C. Wang 2011
The delayed luminescence of biological tissues is an ultraweak reemission of absorbed photons after exposure to external monochromatic or white light illumination. Recently, Wang, Bokkon, Dai and Antal (Brain Res. 2011) presented the first experiment al proof of the existence of spontaneous ultraweak biophoton emission and visible light induced delayed ultraweak photon emission from in vitro freshly isolated rats whole eye, lens, vitreous humor and retina. Here, we suggest that the photobiophysical source of negative afterimage can also occur within the eye by delayed bioluminescent photons. In other words, when we stare at a colored (or white) image for few seconds, external photons can induce excited electronic states within different parts of the eye that is followed by a delayed reemission of absorbed photons for several seconds. Finally, these reemitted photons can be absorbed by nonbleached photoreceptors that produce a negative afterimage. Although this suggests the photobiophysical source of negative afterimages is related retinal mechanisms, cortical neurons have also essential contribution in the interpretation and modulation of negative afterimages.
In this paper we briefly discuss the necessity of using quantum mechanics as a fundamental theory applicable to some key functional aspects of biological systems. This is especially relevant to three important parts of a neuron in the human brain, na mely the cell membrane, microtubules (MT) and ion channels. We argue that the recently published papers criticizing the use of quantum theory in these systems are not convincing.
Recently, we have proposed a redox molecular hypothesis about the natural biophysical substrate of visual perception and imagery (Bokkon, 2009. BioSystems; Bokkon and DAngiulli, 2009. Bioscience Hypotheses). Namely, the retina transforms external pho ton signals into electrical signals that are carried to the V1 (striate cortex). Then, V1 retinotopic electrical signals (spike-related electrical signals along classical axonal-dendritic pathways) can be converted into regulated ultraweak bioluminescent photons (biophotons) through redox processes within retinotopic visual neurons that make it possible to create intrinsic biophysical pictures during visual perception and imagery. However, the consensus opinion is to consider biophotons as by-products of cellular metabolism. This paper argues that biophotons are not by-products, other than originating from regulated cellular radical/redox processes. It also shows that the biophoton intensity can be considerably higher inside cells than outside. Our simple calculations, within a level of accuracy, suggest that the real biophoton intensity in retinotopic neurons may be sufficient for creating intrinsic biophysical picture representation of a single-object image during visual perception.
Recently, we put forwarded a redox molecular hypothesis involving the natural biophysical substrate of visual perception and imagery. Here, we explicitly propose that the feedback and feedforward iterative operation processes can be interpreted in te rms of a homunculus looking at the biophysical picture in our brain during visual imagery. We further propose that the brain can use both picture-like and language-like representation processes. In our interpretation, visualization (imagery) is a special kind of representation i.e., visual imagery requires a peculiar inherent biophysical (picture-like) mechanism. We also conjecture that the evolution of higher levels of complexity made the biophysical picture representation of the external visual world possible by controlled redox and bioluminescent nonlinear (iterative) biochemical reactions in the V1 and V2 areas during visual imagery. Our proposal deals only with the primary level of visual representation (i.e. perceived scene).
In this paper we argue that, in addition to electrical and chemical signals propagating in the neurons of the brain, signal propagation takes place in the form of biophoton production. This statement is supported by recent experimental confirmation o f photon guiding properties of a single neuron. We have investigated the interaction of mitochondrial biophotons with microtubules from a quantum mechanical point of view. Our theoretical analysis indicates that the interaction of biophotons and microtubules causes transitions/fluctuations of microtubules between coherent and incoherent states. A significant relationship between the fluctuation function of microtubules and alpha-EEG diagrams is elaborated on in this paper. We argue that the role of biophotons in the brain merits special attention.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا