ﻻ يوجد ملخص باللغة العربية
It has been suggested that quantum coherence in the selectivity filter of ion channel may play a key role in fast conduction and selectivity of ions. However, it has not been clearly elucidated yet why classical coherence is not sufficient for this purpose. In this paper, we investigate the classical vibrational coherence between carbonyl groups oscillations in the selectivity filter of KcsA ion channels based on the data obtained from molecular dynamics simulations. Our results show that classical coherence plays no effective role in fast ionic conduction.
We introduce a self-consistent multi-species kinetic theory based on the structure of the narrow voltage-gated potassium channel. Transition rates depend on a complete energy spectrum with contributions including the dehydration amongst species, inte
Understanding the mechanisms underlying ion channel function from the atomic-scale requires accurate ab initio modelling as well as careful experiments. Here, we present a density functional theory (DFT) study of the ion channel gramicidin A, whose i
The nicotinic acetylcholine receptor (nAChR) is the prototypic member of the `Cys-loop superfamily of ligand-gated ion channels which mediate synaptic neurotransmission, and whose other members include receptors for glycine, gamma-aminobutyric acid,
We analytically derive the lower bound of the total conformational energy of a protein structure by assuming that the total conformational energy is well approximated by the sum of sequence-dependent pairwise contact energies. The condition for the n
Small-angle X-ray scattering (SAXS) experiments are increasingly used to probe RNA structure. A number of emph{forward models} that relate measured SAXS intensities and structural features, and that are suitable to model either explicit-solvent effec