ﻻ يوجد ملخص باللغة العربية
In addition to chemical and mechanical interactions between cells electromagnetic field produced by cells has been considered as another form of signaling for cell-cell communication. The aim of this study is evaluation of electromagnetic effects on viability of Adipose-derived stem cells (ADSCs) without co-culturing. In this study, stem cells were isolated from human adipose tissue enzymatically and proliferated in monolayer culture. Then, 5.(10^4) adipose-derived stem cells were cultured in each well of the test plate. In the first row (4 wells), ADSCs as inducer cells were cultured in DMEM1 with 10 ng/ml Fibroblast growth factor (FGF). In adjacent and the last rows, ADSCs were cultured without FGF (as detector cells). After the three and five days the viability of cells were evaluated. Moreover, ADSCs were cultured in the same conditions but the inducer cells were placed once in the UV-filter tube and once in the quartz tube to see whether there is electromagnetic interaction among cells. Inducer cells caused significant cell proliferation in adjacent row cells (p- value<0.01) in the fifth day. However, using the UV-filter tube and quartz tube both reduced the effect of inducer cells on adjacent cells significantly. As a conclusion, we could detect distant cellular interaction (DCI) among adipose derived stem cells (ADSCs), but it was not electromagnetic signaling. Our results show that ADSCs affect each other via volatile signaling as a chemical distant cellular interaction (CDCI).
A quantum model on the chemically and physically induced pluripotency in stem cells is proposed. Based on the conformational Hamiltonian and the idea of slow variables (molecular torsions) slaving fast ones the conversion from the differentiate state
Since the discovery of a cancer initiating side population in solid tumours, studies focussing on the role of so-called cancer stem cells in cancer initiation and progression have abounded. The biological interrogation of these cells has yielded volu
The deluge of single-cell data obtained by sequencing, imaging and epigenetic markers has led to an increasingly detailed description of cell state. However, it remains challenging to identify how cells transition between different states, in part be
Quantum Biology is emerging as a new field at the intersection between fundamental physics and biology, promising novel insights into the nature and origin of biological order. We discuss several elements of QBCL (Quantum Biology at Cellular Level),
Numerous biological approaches are available to characterise the mechanisms which govern the formation of human embryonic stem cell (hESC) colonies. To understand how the kinematics of single and pairs of hESCs impact colony formation, we study their