ترغب بنشر مسار تعليمي؟ اضغط هنا

We demonstrate control of the absolute phase of an optical lattice with respect to a single trapped ion. The lattice is generated by off-resonant free-space laser beams, we actively stabilize its phase by measuring its ac-Stark shift on a trapped ion . The ion is localized within the standing wave to better than 2% of its period. The locked lattice allows us to apply displacement operations via resonant optical forces with a controlled direction in phase space. Moreover, we observe the lattice-induced phase evolution of spin superposition states in order to analyze the relevant decoherence mechanisms. Finally, we employ lattice-induced phase shifts for inferring the variation of the ion position over 157~$mu$m range along the trap axis at accuracies of better than 6~nm.
We experimentally demonstrate fast separation of a two-ion crystal in a microstructured segmented Paul trap. By the use of spectroscopic calibration routines for the electrostatic trap potentials, we achieve the required precise control of the ion tr ajectories near the textit{critical point}, where the harmonic confinement by the external potential vanishes. The separation procedure can be controlled by three parameters: A static potential tilt, a voltage offset at the critical point, and the total duration of the process. We show how to optimize the control parameters by measurements of ion distances, trap frequencies and the final motional excitation. At a separation duration of $80 mu$s, we achieve a minimum mean excitation of $bar{n} = 4.16(0.16)$ vibrational quanta per ion, which is consistent with the adiabatic limit given by our particular trap. We show that for fast separation times, oscillatory motion is excited, while a predominantly thermal state is obtained for long times. The presented technique does not rely on specific trap geometry parameters and can therefore be adopted for different segmented traps.
163 - F. Ziesel , T. Ruster , A. Walther 2012
We create displaced number states, which are nonclassical generalizations of coherent states, of a vibrational mode of a single trapped ion.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا