ﻻ يوجد ملخص باللغة العربية
We experimentally demonstrate fast separation of a two-ion crystal in a microstructured segmented Paul trap. By the use of spectroscopic calibration routines for the electrostatic trap potentials, we achieve the required precise control of the ion trajectories near the textit{critical point}, where the harmonic confinement by the external potential vanishes. The separation procedure can be controlled by three parameters: A static potential tilt, a voltage offset at the critical point, and the total duration of the process. We show how to optimize the control parameters by measurements of ion distances, trap frequencies and the final motional excitation. At a separation duration of $80 mu$s, we achieve a minimum mean excitation of $bar{n} = 4.16(0.16)$ vibrational quanta per ion, which is consistent with the adiabatic limit given by our particular trap. We show that for fast separation times, oscillatory motion is excited, while a predominantly thermal state is obtained for long times. The presented technique does not rely on specific trap geometry parameters and can therefore be adopted for different segmented traps.
We theoretically investigate the process of splitting two-ion crystals in segmented Paul traps, i.e. the structural transition from two ions confined in a common well to ions confined in separate wells. The precise control of this process by applicat
For many quantum information implementations with trapped ions, effective shuttling operations are important. Here we discuss the efficient separation and recombination of ions in surface ion trap geometries. The maximum speed of separation and recom
We present a simple Paul trap that stably accommodates up to a couple of dozens of ensuremath{^{171}mathrm{Yb}^+~} ions in a stationary two-dimensional lattice. The trap is constructed on a single plate of gold-plated laser-machined alumina and can p
We report on single Barium ions confined in a near-infrared optical dipole trap for up to three seconds in absence of any radio-frequency fields. Additionally, the lifetime in a visible optical dipole trap is increased by two orders of magnitude as c
Motivated by recent developments in ion trap design and fabrication, we investigate the stability of ion motion in asymmetrical, plan