ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase-stable free-space optical lattices for trapped ions

78   0   0.0 ( 0 )
 نشر من قبل Ulrich Poschinger
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate control of the absolute phase of an optical lattice with respect to a single trapped ion. The lattice is generated by off-resonant free-space laser beams, we actively stabilize its phase by measuring its ac-Stark shift on a trapped ion. The ion is localized within the standing wave to better than 2% of its period. The locked lattice allows us to apply displacement operations via resonant optical forces with a controlled direction in phase space. Moreover, we observe the lattice-induced phase evolution of spin superposition states in order to analyze the relevant decoherence mechanisms. Finally, we employ lattice-induced phase shifts for inferring the variation of the ion position over 157~$mu$m range along the trap axis at accuracies of better than 6~nm.

قيم البحث

اقرأ أيضاً

Control over physical systems at the quantum level is a goal shared by scientists in fields as diverse as metrology, information processing, simulation and chemistry. For trapped atomic ions, the quantized motional and internal degrees of freedom can be coherently manipulated with laser light. Similar control is difficult to achieve with radio frequency or microwave radiation because the essential coupling between internal degrees of freedom and motion requires significant field changes over the extent of the atoms motion. The field gradients are negligible at these frequencies for freely propagating fields; however, stronger gradients can be generated in the near-field of microwave currents in structures smaller than the free-space wavelength. In the experiments reported here, we coherently manipulate the internal quantum states of the ions on time scales of 20 ns. We also generate entanglement between the internal degrees of freedom of two atoms with a gate operation suitable for general quantum computation. We implement both operations through the magnetic fields from microwave currents in electrodes that are integrated into the micro-fabricated trap structure and create an entangled state with fidelity 76(3) %. This approach, where the quantum control mechanism is integrated into the trapping device in a scalable manner, can potentially benefit quantum information processing, simulation and spectroscopy.
We implement a two-qubit entangling M{o}lmer-S{o}rensen interaction by transporting two co-trapped $^{40}mathrm{Ca}^{+}$ ions through a stationary, bichromatic optical beam within a surface-electrode Paul trap. We describe a procedure for achieving a constant Doppler shift during the transport which uses fine temporal adjustment of the moving confinement potential. The fixed interaction duration of the ions transported through the laser beam as well as the dynamically changing ac Stark shift require alterations to the calibration procedures used for a stationary gate. We use the interaction to produce Bell states with fidelities commensurate to those of stationary gates performed in the same system. This result establishes the feasibility of actively incorporating ion transport into quantum information entangling operations.
Thermodynamics is one of the oldest and well-established branches of physics that sets boundaries to what can possibly be achieved in macroscopic systems. While it started as a purely classical theory, it was realized in the early days of quantum mec hanics that large quantum devices, such as masers or lasers, can be treated with the thermodynamic formalism. Remarkable progress has been made recently in the miniaturization of heat engines all the way to the single Brownian particle as well as to a single atom. However, despite several theoretical proposals, the implementation of heat machines in the fully quantum regime remains a challenge. Here, we report an experimental realization of a quantum absorption refrigerator in a system of three trapped ions, with three of its normal modes of motion coupled by a trilinear Hamiltonian such that heat transfer between two modes refrigerates the third. We investigate the dynamics and steady-state properties of the refrigerator and compare its cooling capability when only thermal states are involved to the case when squeezing is employed as a quantum resource. We also study the performance of such a refrigerator in the single shot regime, and demonstrate cooling below both the steady-state energy and the benchmark predicted by the classical thermodynamics treatment.
Trapped-ion quantum information processors offer many advantages for achieving high-fidelity operations on a large number of qubits, but current experiments require bulky external equipment for classical and quantum control of many ions. We demonstra te the cryogenic operation of an ion-trap that incorporates monolithically-integrated high-voltage CMOS electronics ($pm 8mathrm{V}$ full swing) to generate surface-electrode control potentials without the need for external, analog voltage sources. A serial bus programs an array of 16 digital-to-analog converters (DACs) within a single chip that apply voltages to segmented electrodes on the chip to control ion motion. Additionally, we present the incorporation of an integrated circuit that uses an analog switch to reduce voltage noise on trap electrodes due to the integrated amplifiers by over $50mathrm{dB}$. We verify the function of our integrated electronics by performing diagnostics with trapped ions and find noise and speed performance similar to those we observe using external control elements.
A system of harmonic oscillators coupled via nonlinear interaction is a fundamental model in many branches of physics, from biophysics to electronics and condensed matter physics. In quantum optics, weak nonlinear interaction between light modes has enabled, for example, the preparation of squeezed states of light and generation of entangled photon pairs. While strong nonlinear interaction between the modes has been realized in circuit QED systems, achieving significant interaction strength on the level of single quanta in other physical systems remains a challenge. Here we experimentally demonstrate such interaction that is equivalent to photon up- and down-conversion using normal modes of motion in a system of two Yb ions. The nonlinearity is induced by the intrinsic anharmonicity of the Coulomb interaction between the ions and can be used to simulate fully quantum operation of a degenerate optical parametric oscillator. We exploit this interaction to directly measure the parity and Wigner functions of ion motional states. The nonlinear coupling, combined with near perfect control of internal and motional states of trapped ions, can be applied to quantum computing, quantum thermodynamics, and even shed some light on the quantum information aspects of Hawking radiation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا