ترغب بنشر مسار تعليمي؟ اضغط هنا

A three-dimensional strong-topological-insulator or -semimetal hosts topological surface states which are often said to be gapless so long as time-reversal symmetry is preserved. This narrative can be mistaken when surface state degeneracies occur aw ay from time-reversal-invariant momenta. The mirror-invariance of the system then becomes essential in protecting the existence of a surface Fermi surface. Here we show that such a case exists in the strong-topological-semimetal Bi$_4$Se$_3$. Angle-resolved photoemission spectroscopy and textit{ab initio} calculations reveal partial gapping of surface bands on the Bi$_2$Se$_3$-termination of Bi$_4$Se$_3$(111), where an 85 meV gap along $bar{Gamma}bar{K}$ closes to zero toward the mirror-invariant $bar{Gamma}bar{M}$ azimuth. The gap opening is attributed to an interband spin-orbit interaction that mixes states of opposite spin-helicity.
Proximity-induced superconductivity in a 3D topological insulator represents a new avenue for observing zero-energy Majorana fermions inside vortex cores. Relatively small gaps and low transition temperatures of conventional s-wave superconductors pu t the hard constraints on these experiments. Significantly larger gaps and higher transition temperatures in cuprate superconductors might be an attractive alternative to considerably relax these constraints, but it is not clear whether the proximity effect would be effective in heterostructures involving cuprates and topological insulators. Here, we present angle-resolved photoemission studies of thin Bi2Se3 films grown in-situ on optimally doped Bi2Sr2CaCu2O8 substrates that show the absence of proximity-induced gaps on the surfaces of Bi2Se3 films as thin as a 1.5 quintuple layer. These results suggest that the superconducting proximity effect between a cuprate superconductor and a topological insulator is strongly suppressed, likely due to a very short coherence length along the c-axis, incompatible crystal and pairing symmetries at the interface, small size of the topological surface state Fermi surface and adverse effects of a strong spin-orbit coupling in the topological material.
Gapless surface states on topological insulators are protected from elastic scattering on non-magnetic impurities which makes them promising candidates for low-power electronic applications. However, for wide-spread applications, these states should remain coherent and significantly spin polarized at ambient temperatures. Here, we studied the coherence and spin-structure of the topological states on the surface of a model topological insulator, Bi2Se3, at elevated temperatures in spin and angle-resolved photoemission spectroscopy. We found an extremely weak broadening and essentially no decay of spin polarization of the topological surface state up to room temperature. Our results demonstrate that the topological states on surfaces of topological insulators could serve as a basis for room temperature electronic devices.
102 - T. Valla 2013
25 years after discovery of high-temperature superconductivity (HTSC) in La$_{2-x}$Ba$_x$CuO$_4$ (LBCO), the HTSC continues to pose some of the biggest challenges in materials science. Cuprates are fundamentally different from conventional supercondu ctors in that the metallic conductivity and superconductivity are induced by doping carriers into an antiferromagnetically ordered correlated insulator. In such systems, the normal state is expected to be quite different from a Landau-Fermi liquid - the basis for the conventional BCS theory of superconductivity. The situation is additionally complicated by the fact that cuprates are susceptible to charge/spin ordering tendencies, especially in the low-doping regime. The role of such tendencies on the phenomenon of superconductivity is still not completely clear. Here, we present studies of the electronic structure in cuprates where the superconductivity is strongly suppressed as static spin and charge orders or stripes develop near the doping level of $x =1/8$ and outside of the superconducting dome, for $x<0.055$. We discuss the relationship between the stripes, superconductivity, pseudogap and the observed electronic excitations in these materials.
We report spin- and angle-resolved photoemission studies of a topological insulator from the infinitely adaptive series between elemental Bi and Bi$_2$Se$_3$. The compound, based on Bi$_4$Se$_3$, is a 1:1 natural superlattice of alternating Bi$_2$ la yers and Bi$_2$Se$_3$ layers; the inclusion of S allows the growth of large crystals, with the formula Bi$_4$Se$_{2.6}$S$_{0.4}$. The crystals cleave along the interfaces between the Bi$_2$ and Bi$_2$Se$_3$ layers, with the surfaces obtained having alternating Bi or Se termination. The resulting terraces, observed by photoemission electron microscopy, create avenues suitable for the study of one-dimensional topological physics. The electronic structure, determined by spin- and angle- resolved photoemission spectroscopy, shows the existence of a surface state that forms a large, hexagonally shaped Fermi surface around the $Gamma$ point of the surface Brillouin zone, with the spin structure indicating that this material is a topological insulator.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا