ترغب بنشر مسار تعليمي؟ اضغط هنا

Absence of a Proximity Effect in a Topological Insulator on a Cuprate Superconductor: Bi2Se3/Bi2Sr2CaCu2O8

159   0   0.0 ( 0 )
 نشر من قبل Tonica Valla
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Proximity-induced superconductivity in a 3D topological insulator represents a new avenue for observing zero-energy Majorana fermions inside vortex cores. Relatively small gaps and low transition temperatures of conventional s-wave superconductors put the hard constraints on these experiments. Significantly larger gaps and higher transition temperatures in cuprate superconductors might be an attractive alternative to considerably relax these constraints, but it is not clear whether the proximity effect would be effective in heterostructures involving cuprates and topological insulators. Here, we present angle-resolved photoemission studies of thin Bi2Se3 films grown in-situ on optimally doped Bi2Sr2CaCu2O8 substrates that show the absence of proximity-induced gaps on the surfaces of Bi2Se3 films as thin as a 1.5 quintuple layer. These results suggest that the superconducting proximity effect between a cuprate superconductor and a topological insulator is strongly suppressed, likely due to a very short coherence length along the c-axis, incompatible crystal and pairing symmetries at the interface, small size of the topological surface state Fermi surface and adverse effects of a strong spin-orbit coupling in the topological material.



قيم البحث

اقرأ أيضاً

87 - Kyungwha Park , Gabor Csire , 2020
Superconductor-topological insulator (SC-TI) heterostructures were proposed to be a possible platform to realize and control Majorana zero-modes. Despite experimental signatures indicating their existence, univocal interpretation of the observed feat ures demands theories including realistic electronic structures. To achieve this, we solve the Kohn-Sham-Dirac-Bogoliubov-de Gennes equations for ultrathin Bi$_2$Se$_3$ films on superconductor PdTe, within the fully relativistic Korringa-Kohn-Rostoker method, and investigate quasiparticle spectra as a function of chemical potential and film thickness. We find a strongly momentum-dependent proximity-induced gap feature where the gap sizes highly depend on characteristics of the TI states. The interface TI Dirac state is relevant to the induced gap only when the chemical potential is close to the Dirac-point energy. Otherwise, at a given chemical potential, the largest induced gap arises from the highest-energy quantum-well states, whereas the smallest gap arises from the TI topological surface state with its gap size depending on the TI pairing potential.
Proximity-effect-induced superconductivity was studied in epitaxial topological insulator Bi2Se3 thin films grown on superconducting NbSe2 single crystals. A point contact spectroscopy (PCS) method was used at low temperatures down to 40 mK. An induc ed superconducting gap in Bi2Se3 was observed in the spectra, which decreased with increasing Bi2Se3 layer thickness, consistent with the proximity effect in the bulk states of Bi2Se3 induced by NbSe2. At very low temperatures, an extra point contact feature which may correspond to a second energy gap appeared in the spectrum. For a 16 quintuple layer Bi2Se3 on NbSe2 sample, the bulk state gap value near the top surface is ~ 159 {mu}eV, while the second gap value is ~ 120 {mu}eV at 40 mK. The second gap value decreased with increasing Bi2Se3 layer thickness, but the ratio between the second gap and the bulk state gap remained about the same for different Bi2Se3 thicknesses. It is plausible that this is due to superconductivity in Bi2Se3 topological surface states induced through the bulk states. The two induced gaps in the PCS measurement are consistent with the three-dimensional bulk state and the two-dimensional surface state superconducting gaps observed in the angle-resolved photoemission spectroscopy (ARPES) measurement.
186 - Fan Yang , Fanming Qu , Jie Shen 2012
We have studied the electron transport properties of topological insulator-related material Bi2Se3 near the superconducting Pb-Bi2Se3 interface, and found that a superconducting state is induced over an extended volume in Bi2Se3. This state can carry a Josephson supercurrent, and demonstrates a gap-like structure in the conductance spectra as probed by a normal-metal electrode. The establishment of the gap is not by confining the electrons into a narrow space close to the superconductor-normal metal interface, as previously observed in other systems, but presumably via electron-electron attractive interaction in Bi2Se3.
Realization of topological superconductors (TSCs) hosting Majorana fermions is a central challenge in condensed-matter physics. One approach is to use the superconducting proximity effect (SPE) in heterostructures, where a topological insulator conta cted with a superconductor hosts an effective p-wave pairing by the penetration of Cooper pairs across the interface. However, this approach suffers a difficulty in accessing the topological interface buried deep beneath the surface. Here, we propose an alternative approach to realize topological superconductivity without SPE. In a Pb(111) thin film grown on TlBiSe2, we discover that the Dirac-cone state of substrate TlBiSe2 migrates to the top surface of Pb film and obtains an energy gap below the superconducting transition temperature of Pb. This suggests that a BCS superconductor is converted into a TSC by the topological proximity effect. Our discovery opens a route to manipulate topological superconducting properties of materials.
In this communication we consider generalities of the proximity effect in a contact between a conventional $s$-wave superconductor (S) nano-island and a thin film of a topological insulator (TI). A local hybridization coupling mechanism is considered and a corresponding model is corroborated that captures not only the induced unconventional superconductivity in a TI, but also predicts the spreading of topologically protected surface states into the superconducting over-layer. This dual nature of the proximity effect leads specifically to a modified description of topological superconductivity in these systems. Experimentally accessible signatures of this phenomenon are discussed in the context of scanning tunneling microscopy measurements. For this purpose an effective density of states is computed in both the superconductor and topological insulator. As a guiding example, practical applications are made for Nb islands deposited on a surface of Bi$_2$Se$_3$. The obtained results are general and can be applied beyond the particular material system used. Possible implications of these results to proximity circuits and hybrid hardware devices for quantum computation processing are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا