ترغب بنشر مسار تعليمي؟ اضغط هنا

The neutral-to-ionic phase transition in the mixed-stack charge-transfer complex tetrathiafulvalene-p-chloranil (TTF-CA) has been studied by pressure-dependent infrared spectroscopy up to p=11 kbar and down to low temperatures, T = 10 K. By tracking the C=O antisymmetric stretching mode of CA molecules, we accurately determine the ionicity of TTF-CA in the pressure-temperature phase diagram. At any point the TTF-CA crystal bears only a single ionicity; there is no coexistence region or an exotic high-pressure phase. Our findings shed new light on the role of electron-phonon interaction in the neutral-ionic transition.
The Mott insulator kappa-(BEDT-TTF)2Cu[N(CN)2]Cl consists of molecular dimers arranged on an anisotropic triangular lattice and develops a canted antiferromagnetic ground state. It has recently been suggested that this system features purely electron ic ferroelectricity which requires an electric dipole moment. Optical spectroscopy clearly rules out charge imbalance in this system, which excludes the existence of quantum electric dipoles on the dimers and subsequently a dipolar spin coupling. We suggest that the prominent in-plane dielectric response in kappa-(BEDT-TTF)2Cu[N(CN)2]Cl is due to short-range discommensurations of the antiferromagnetic phase in the temperature range 30 < T < 50 K, and domain wall relaxations at lower temperatures.
Electric-field-dependent pulse measurements are reported in the charge-ordered state of alpha-(BEDT-TTF)2I3. At low electric fields up to about 50 V/cm only negligible deviations from Ohmic behavior can be identified with no threshold field. At large r electric fields and up to about 100 V/cm a reproducible negative differential resistance is observed with a significant change in shape of the measured resistivity in time. These changes critically depend whether constant voltage or constant current is applied to the single crystal. At high enough electric fields the resistance displays a dramatic drop down to metallic values and relaxes subsequently in a single-exponential manner to its low-field steady-state value. We argue that such an electric-field induced negative differential resistance and switching to transient states are fingerprints of cooperative domain-wall dynamics inherent to two-dimensional bond-charge density wave with ferroelectric-like nature.
We report on the anisotropic response, the charge and lattice dynamics of normal and charge-ordered phases with horizontal stripes in single crystals of the organic conductor alpha-(BEDT-TTF)2I3 determined by dc resistivity, dielectric and optical sp ectroscopy. An overdamped Drude response and a small conductivity anisotropy observed in optics is consistent with a weakly temperature dependent dc conductivity and anisotropy at high temperatures. The splitting of the molecular vibrations nu27(Bu) evidences the abrupt onset of static charge order below TCO=136 K. The drop of optical conductivity measured within the ab plane of the crystal is characterized by an isotropic gap that opens of approximately 75 meV with several phonons becoming pronounced below. Conversely, the dc conductivity anisotropy rises steeply, attaining at 50 K a value 25 times larger than at high temperatures. The dielectric response within this plane reveals two broad relaxation modes of strength Deltaepsilon_LD ~= 5000 and Deltaepsilon_SD ~= 400, centered at 1 kHz < f_LD < 100 MHz and f_SD ~= 1 MHz. The anisotropy of the large-mode (LD) mean relaxation time closely follows the temperature behavior of the respective dc conductivity ratio. We argue that this phason-like excitation is best described as a long-wavelength excitation of a 2kF bond-charge density wave expected theoretically for layered quarter-filled electronic systems with horizontal stripes. Conversely, based on the theoretically expected ferroelectric-like nature of the charge-ordered phase, we associate the small-mode (SD) relaxation with the motion of domain-wall pairs, created at the interface between two types of domains, along the a and b axes. We also consider other possible theoretical interpretations and discuss their limitations.
The charge response of charge-ordered state in the organic conductor alpha-(BEDT-TTF)2I3 is characterized by dc resistivity, dielectric and optical spectroscopy in different crystallographic directions within the two-dimensional conduction layer. Two dielectric modes are detected. The large mode is related to the phason-like excitation of the 2kF bond-charge density wave which forms in the ab plane. The small dielectric mode is associated with the motion of domain-wall pairs along the a- and b-axes between two types of domains which are created due to inversion symmetry breaking.
The charge transport in the copper-oxygen chain/ladder layers of (La,Y)y(Sr,Ca)14-yCu24O41 is investigated along two crystallographic directions in the temperature range from 50 K to 700 K and for doping levels from y ~= 6 (number of holes nh < 1) to y = 0 (number of holes nh = 6). A crossover from a one-dimensional hopping transport along the chains for y >= 3 to a quasi-two-dimensional charge conduction in the ladder planes for y <~ 2 is observed. This is attributed to a partial hole transfer from chains to ladders when the hole doping exceeds nh ~= 4 and approaches fully doped value n_h = 6. For y <~ 2 a weak dielectric relaxation at radio-frequencies and a microwave mode are detected, which might be recognized as signatures of a charge-density wave phase developed at short length scales in the ladders planes.
174 - T. Ivek , T. Vuletic , S. Tomic 2008
The charge response in the barium vanadium sulfide (BaVS3) single crystals is characterized by dc resistivity and low frequency dielectric spectroscopy. A broad relaxation mode in MHz range with huge dielectric constant ~= 10^6 emerges at the metal-t o-insulator phase transition TMI ~= 67 K, weakens with lowering temperature and eventually levels off below the magnetic transition Tchi ~= 30 K. The mean relaxation time is thermally activated in a manner similar to the dc resistivity. These features are interpreted as signatures of the collective charge excitations characteristic for the orbital ordering that gradually develops below TMI and stabilizes at long-range scale below Tchi.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا