ﻻ يوجد ملخص باللغة العربية
We report on the anisotropic response, the charge and lattice dynamics of normal and charge-ordered phases with horizontal stripes in single crystals of the organic conductor alpha-(BEDT-TTF)2I3 determined by dc resistivity, dielectric and optical spectroscopy. An overdamped Drude response and a small conductivity anisotropy observed in optics is consistent with a weakly temperature dependent dc conductivity and anisotropy at high temperatures. The splitting of the molecular vibrations nu27(Bu) evidences the abrupt onset of static charge order below TCO=136 K. The drop of optical conductivity measured within the ab plane of the crystal is characterized by an isotropic gap that opens of approximately 75 meV with several phonons becoming pronounced below. Conversely, the dc conductivity anisotropy rises steeply, attaining at 50 K a value 25 times larger than at high temperatures. The dielectric response within this plane reveals two broad relaxation modes of strength Deltaepsilon_LD ~= 5000 and Deltaepsilon_SD ~= 400, centered at 1 kHz < f_LD < 100 MHz and f_SD ~= 1 MHz. The anisotropy of the large-mode (LD) mean relaxation time closely follows the temperature behavior of the respective dc conductivity ratio. We argue that this phason-like excitation is best described as a long-wavelength excitation of a 2kF bond-charge density wave expected theoretically for layered quarter-filled electronic systems with horizontal stripes. Conversely, based on the theoretically expected ferroelectric-like nature of the charge-ordered phase, we associate the small-mode (SD) relaxation with the motion of domain-wall pairs, created at the interface between two types of domains, along the a and b axes. We also consider other possible theoretical interpretations and discuss their limitations.
The charge response of charge-ordered state in the organic conductor alpha-(BEDT-TTF)2I3 is characterized by dc resistivity, dielectric and optical spectroscopy in different crystallographic directions within the two-dimensional conduction layer. Two
A detailed investigation of the out-of-plane electrical properties of charge-ordered alpha-(BEDT-TTF)2I3 provides clear evidence for ferroelectricity. Similar to multiferroic alpha-(BEDT-TTF)2Cu[N(CN)2]Cl, the polar order in this material is ascribed
Electric-field-dependent pulse measurements are reported in the charge-ordered state of alpha-(BEDT-TTF)2I3. At low electric fields up to about 50 V/cm only negligible deviations from Ohmic behavior can be identified with no threshold field. At large
The effects of electron correlation in the quasi-two-dimensional organic conductor alpha-(BEDT-TTF)2I3 are investigated theoretically by using an extended Hubbard model with on-site and nearest-neighbor Coulomb interactions. A variational Monte Carlo
$alpha$-(BEDT-TTF)$_2$I$_3$ is a prominent example of charge ordering among organic conductors. In this work we explore the details of transport within the charge-ordered as well as semimetallic phase at ambient pressure. In the high-temperature semi