ترغب بنشر مسار تعليمي؟ اضغط هنا

We use coherent excitation of 3-16 atom ensembles to demonstrate collective Rabi flopping mediated by Rydberg blockade. Using calibrated atom number measurements, we quantitatively confirm the expected $sqrt{N}$ Rabi frequency enhancement to within 4 %. The resulting atom number distributions are consistent with essentially perfect blockade. We then use collective Rabi $pi$ pulses to produce ${cal N}=1,2$ atom number Fock states with fidelities of 62% and 48% respectively. The ${cal N}=2$ Fock state shows the collective Rabi frequency enhancement without corruption from atom number fluctuations.
96 - A. Korver , R. Wyllie , B. Lancor 2013
We demonstrate that spin-exchange dephasing of Larmor precession at near-earth-scale fields is effectively eliminated by dressing the alkali-metal atom spins in a sequence of AC-coupled 2-pi pulses, repeated at the Larmor precession frequency. The co ntribution of spin-exchange collisions to the spectroscopic line width is reduced by a factor of the duty cycle of the pulses. We experimentally demonstrate resonant transverse pumping in magnetic fields as high as 0.1 Gauss, present experimental measurements of the suppressed spin-exchange relaxation, and show enhanced magnetometer response relative to a light-narrowed scalar magnetometer.
We place new limits on potential T- and P- violating monopole-dipole interactions between unpolarized nucleons and neutrons using dual species magnetic resonance in polarzed Xe gas. Free-induction decay transients with relaxation times ~20 s allow hi gh precision measurements of the NMR frequencies, whose ratios cancel magnetic fluctuations. The new limits on the product gsgp improve on previous laboratory work by 2 orders of magnitude.
Over the past few years we have built an apparatus to demonstrate the entanglement of neutral Rb atoms at optically resolvable distances using the strong interactions between Rydberg atoms. Here we review the basic physics involved in this process: l oading of single atoms into individual traps, state initialization, state readout, single atom rotations, blockade-mediated manipulation of Rydberg atoms, and demonstration of entanglement.
We describe an array of spin-exchange relaxation free optical magnetometers designed for detection of fetal magnetocardiography (fMCG) signals. The individual magnetometers are configured with a small volume with intense optical pumping, surrounded b y a large pump-free region. Spin-polarized atoms that diffuse out of the optical pumping region precess in the ambient magnetic field and are detected by a probe laser. Four such magnetometers, at the corners of a 7 cm square, are configured for gradiometry by feeding back the output of one magnetometer to a field coil to null uniform magnetic field noise at frequencies up to 200 Hz. Using this array, we present the first measurements of fMCG signals using an atomic magnetometer.
We present measurements of the optical absorption of K vapor at 795 nm due to the presence of high pressure He gas. The results set a limit on the polarization attainable in hybrid spin-exchange optical pumping of He-3.
99 - B. Lancor , T. G. Walker 2010
We consider the degree of conservation of nuclear spin polarization in the process of optical pumping under typical spin-exchange optical pumping conditions. Previous analyses have assumed that negligible nuclear spin precession occurs in the brief p eriods of time the alkali-metal atoms are in the excited state after absorbing photons and before undergoing quenching collisions with nitrogen molecules. We include excited-state hyperfine interactions, electronic spin relaxation in collisions with He and N_2, spontaneous emission, quenching collisions, and a simplified treatment of radiation trapping.
We present measurements of the circular dichroism of optically pumped Rb vapor near the D1 resonance line. Collisions with the buffer gases $^3$He and N$_2$ reduce the transparency of the vapor, even when fully polarized. We use two methods to measur e this effect, show that the He results can be understood from RbHe potential curves, and show how this effect conspires with the spectral profile of the optical pumping light to increase the laser power demands for optical pumping of very optically thick samples.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا