ﻻ يوجد ملخص باللغة العربية
We demonstrate that spin-exchange dephasing of Larmor precession at near-earth-scale fields is effectively eliminated by dressing the alkali-metal atom spins in a sequence of AC-coupled 2-pi pulses, repeated at the Larmor precession frequency. The contribution of spin-exchange collisions to the spectroscopic line width is reduced by a factor of the duty cycle of the pulses. We experimentally demonstrate resonant transverse pumping in magnetic fields as high as 0.1 Gauss, present experimental measurements of the suppressed spin-exchange relaxation, and show enhanced magnetometer response relative to a light-narrowed scalar magnetometer.
We present calculations of spin-relaxation rates of alkali-metal atoms due to the spin-axis interaction acting in binary collisions between the atoms. We show that for the high-temperature conditions of interest here, the spin relaxation rates calcul
The Cosmic Axion Spin Precession Experiment (CASPEr) seeks to measure oscillating torques on nuclear spins caused by axion or axion-like-particle (ALP) dark matter via nuclear magnetic resonance (NMR) techniques. A sample spin-polarized along a leadi
We demonstrate a substantial improvement in the spin-exchange gate using symmetric control instead of conventional detuning in GaAs spin qubits, up to a factor-of-six increase in the quality factor of the gate. For symmetric operation, nanosecond vol
We establish a testbed system for the development of high-sensitivity Electron Spin Resonance (ESR) techniques for small samples at cryogenic temperatures. Our system consists of a Niobium Nitride thin-film planar superconducting microresonator desig
We present pulsed electron-nuclear double resonance (ENDOR) experiments which enable us to characterize the coupling between bismuth donor spin qubits in Si and the surrounding spin bath of 29Si impurities which provides the dominant decoherence mech