ترغب بنشر مسار تعليمي؟ اضغط هنا

88 - T. Shahbaz 2015
We present time-resolved optical photometry of the binary millisecond `redback pulsar PSR J1023+0038 (=AY Sex) during its low-mass X-ray binary phase. The light curves taken between 2014 January and April show an underlying sinusoidal modulation due to the irradiated secondary star and accretion disc. We also observe superimposed rapid flaring on time-scales as short as ~20 s with amplitudes of ~0.1-0.5 mag and additional large flare events on time-scales of ~5-60 min with amplitudes ~0.5-1.0 mag. The power density spectrum of the optical flare light curves is dominated by a red-noise component, typical of aperiodic activity in X-ray binaries. Simultaneous X-ray and UV observations by the Swift satellite reveal strong correlations that are consistent with X-ray reprocessing of the UV light, most likely in the outer regions of the accretion disc. On some nights we also observe sharp-edged, rectangular, flat-bottomed dips randomly distributed in orbital phase, with a median duration of ~250 s and a median ingress/egress time of ~20 s. These rectangular dips are similar to the mode-switching behaviour between disc `active and `passive luminosity states, observed in the X-ray light curves of other redback millisecond pulsars. This is the first time that the optical analogue of the X-ray mode-switching has been observed. The properties of the passive and active state light curves can be explained in terms of clumpy accretion from a trapped inner accretion disc near the corotation radius, resulting in rectangular, flat-bottomed optical and X-ray light curves.
69 - T. Shahbaz 2014
We accurately determine the fundamental system parameters of the neutron-star X-ray transient Cen X-4 solely using phase-resolved high-resolution UVES spectroscopy. We first determine the radial-velocity curve of the secondary star and then model the shape of the phase-resolved absorption line profiles using an X-ray binary model. The model computes the exact rotationally broadened phase-resolved spectrum and does not depend on assumptions about the rotation profile, limb-darkening coefficients and the effects of contamination from an accretion disk. We determine the secondary star-to-neutron star binary mass ratio to be 0.1755+/-0.0025, which is an order of magnitude more accurate than previous estimates. We also constrain the inclination angle to be 32 (+8; -2) degrees, Combining these values with the results of the radial velocity study gives a neutron star mass of 1.94 (+0.37; -0.85) Msun consistent with previous estimates. Finally, we perform the first Roche tomography reconstruction of the secondary star in an X-ray binary. The tomogram reveals surface inhomogeneities that are due to the presence of cool starspots. A large cool polar spot, similar to that seen in Doppler images of rapidly-rotating isolated stars is present on the Northern hemisphere of the K7 secondary star and we estimate that about 4 per cent of the total surface area of the donor star is covered with spots. This evidence for starspots supports the idea that magnetic braking plays an important role in the evolution of low-mass X-ray binaries.
We present high time-resolution ULTRACAM optical and NOTCam infrared observations of the edge-on black hole X-ray transient Swift J1357.2-0933. Our data taken in 2012 and 2013 show the system to be at its pre-outburst magnitude and so the system is i n quiescence. In contrast to other X-ray transients, the quiescent light curves of Swift J1357.2-0933 do not show the secondary stars ellipsoidal modulation. The optical light curve is dominated by variability with an optical fractional rms of ~35 per cent, a factor of >3 larger than what is observed in other systems at similar time-resolution. Optical flare events lasting 2-10min with amplitudes of up to ~1.5 mag are seen as well as numerous rapid ~0.8 mag dip events which are similar to the optical dips seen in outburst. Similarly the infrared J-band light curve is dominated by variability with a fractional rms of ~21 per cent and flare events lasting 10--30 min with amplitudes of up to ~1.5 mag are observed. The quiescent optical to mid-infrared spectral energy distribution in quiescence is dominated by a non-thermal component with a power--law index of -1.4, (the broad-band rms SED has a similar index) which arises from optically thin synchrotron emission most likely originating in a weak jet; the lack of a peak in the spectral energy distribution rules out advection-dominated models. Using the outburst amplitude--period relation for X-ray transients we estimate the quiescent magnitude of the secondary star to lie in the range V_min=22.7 to 25.6, which when combined with the absolute magnitude of the expected M4.5 V secondary star allows us to constrain to the distance to lie in the range 0.5 to 6.3 kpc. (Abridged)
We present IACTalks, a free and open access seminars archive (http://iactalks.iac.es) aimed at promoting astronomy and the exchange of ideas by providing high-quality scientific seminars to the astronomical community. The archive of seminars and talk s given at the Instituto de Astrofiisica de Canarias goes back to 2008. Over 360 talks and seminars are now freely available by streaming over the internet. We describe the user interface, which includes two video streams, one showing the speaker, the other the presentation. A search function is available, and seminars are indexed by keywords and in some cases by series, such as special training courses or the 2011 Winter School of Astrophysics, on secular evolution of galaxies. The archive is made available as an open resource, to be used by scientists and the public.
We present high time-resolution multicolour optical observations of the quiescent X-ray transients GRS1124-684 (=GU Mus) and Cen X-4 (=V822 Cen) obtained with ULTRACAM. Superimposed on the secondary stars ellipsoidal modulation in both objects are la rge flares on time-scales of 30-60 min, as well as several distinct rapid flares on time-scales of a few minutes, most of which show further variability and unresolved structure. Not significant quasi-periodic oscillations are observed and the power density spectra of GRS1124-684 and Cen X-4 can be described by a power-law. From the colour-colour diagrams of the flare events, for GRS1124-684 we find that the flares can be described by hydrogen gas with a density of N_H~10^24 nucleons cm^-2, a temperature of ~8000 K and arising from a radius of ~0.3 Rsun. Finally we compile the values for the transition radius (the radius of the hot advection-dominated accretion flow) estimated from quasi-periodic oscillations and/or breaks in the power density spectrum for a variety of X-ray transients in different X-ray states. As expected, we find a strong correlation between the bolometric luminosity and the transition radius.
127 - T. Shahbaz 2008
We present a detailed optical study of the ultra-compact X-ray binary 4U0614+091. We have used 63 hrs of time-resolved optical photometry taken with three different telescopes (IAC80, NOT and SPM) to search for optical modulations. The power spectra of each dataset reveals sinusoidal modulations with different periods, which are not always present. The strongest modulation has a period of 51.3 mins, a semi-amplitude of 4.6 mmags, and is present in the IAC80 data. The SPM and NOT data show periods of 42 mins and 64 mins respectively, but with much weaker amplitudes, 2.6 mags and 1.3 mmags respectively. These modulations arise from either X-ray irradiation of the inner face of the secondary star and/or a superhump modulation from the accretion disc, or quasi-periodic modulations in the accretion disc. It is unclear whether these periods/quasi-periodic modulations are related to the orbital period, however, the strongest period of 51.3 mins is close to earlier tentative orbital periods. Further observations taken over a long base-line are encouraged.
110 - T. Shahbaz 2007
We present near-infrared linear spectropolarimetry of a sample of persistent X-ray binaries, Sco X-1, Cyg X-2 and GRS1915+105. The slopes of the spectra are shallower than what is expected from a standard steady-state accretion disc, and can be expla ined if the near-infrared flux contains a contribution from an optically thin jet. For the neutron star systems, Sco X-1 and Cyg X-2, the polarization levels at 2.4um are 1.3+/-0.10% and 5.4+/-0.7% respectively which is greater than the polarization level at 1.65um. This cannot be explained by interstellar polarization or electron scattering in the anisotropic environment of the accretion flow. We propose that the most likely explanation is that this is the polarimetric signature of synchrotron emission arising from close to the base of the jets in these systems. In the black hole system GRS1915+105 the observed polarization, although high (5.0+/-1.2% at 2.4um), may be consistent with interstellar polarization. For Sco X-1 the position angle of the radio jet on the sky is approximately perpendicular to the near-infrared position angle (electric vector), suggesting that the magnetic field is aligned with the jet. These observations may be a first step towards probing the ordering, alignment and variability of the outflow magnetic field in a region closer to the central accreting object than is observed in the radio band.
35 - T. Shahbaz 2007
CONTEXT: The masses previously obtained for the X-ray binary 2S0921-630 inferred a compact object that was either a high-mass neutron star or low-mass black-hole, but used a previously published value for the rotational broadening (vsini) with large uncertainties. AIMS: We aim to determine an accurate mass for the compact object through an improved measurement of the secondary stars projected equatorial rotational velocity. METHODS: We have used UVES echelle spectroscopy to determine the vsini of the secondary star (V395 Car) in the low-mass X-ray binary 2S0921-630 by comparison to an artificially broadened spectral-type template star. In addition, we have also measured vsini from a single high signal-to-noise ratio absorption line profile calculated using the method of Least-Squares Deconvolution (LSD). RESULTS: We determine vsini to lie between 31.3+/-0.5km/s to 34.7+/-0.5km/s (assuming zero and continuum limb darkening, respectively) in disagreement with revious results based on intermediate resolution spectroscopy obtained with the 3.6m NTT. Using our revised vsini value in combination with the secondary stars radial velocity gives a binary mass ratio of 0.281+/-0.034. Furthermore, assuming a binary inclination angle of 75 degrees gives a compact object mass of 1.37+/-0.13Mo. CONCLUSIONS: We find that using relatively low-resolution spectroscopy can result in systemic uncertainties in the measured vsini values obtained using standard methods. We suggest the use of LSD as a secondary, reliable check of the results as LSD allows one to directly discern the shape of the absorption line profile. In the light of the new vsini measurement, we have revised down the compact objects mass, such that it is now compatible with a canonical neutron star mass.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا