ترغب بنشر مسار تعليمي؟ اضغط هنا

Observations of the quiescent X-ray transients GRS 1124-684 (=GU Mus) and Cen X-4 (=V822 Cen) taken with ULTRACAM on the VLT

209   0   0.0 ( 0 )
 نشر من قبل Tariq Shahbaz
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present high time-resolution multicolour optical observations of the quiescent X-ray transients GRS1124-684 (=GU Mus) and Cen X-4 (=V822 Cen) obtained with ULTRACAM. Superimposed on the secondary stars ellipsoidal modulation in both objects are large flares on time-scales of 30-60 min, as well as several distinct rapid flares on time-scales of a few minutes, most of which show further variability and unresolved structure. Not significant quasi-periodic oscillations are observed and the power density spectra of GRS1124-684 and Cen X-4 can be described by a power-law. From the colour-colour diagrams of the flare events, for GRS1124-684 we find that the flares can be described by hydrogen gas with a density of N_H~10^24 nucleons cm^-2, a temperature of ~8000 K and arising from a radius of ~0.3 Rsun. Finally we compile the values for the transition radius (the radius of the hot advection-dominated accretion flow) estimated from quasi-periodic oscillations and/or breaks in the power density spectrum for a variety of X-ray transients in different X-ray states. As expected, we find a strong correlation between the bolometric luminosity and the transition radius.



قيم البحث

اقرأ أيضاً

137 - T. Shahbaz 2014
We accurately determine the fundamental system parameters of the neutron-star X-ray transient Cen X-4 solely using phase-resolved high-resolution UVES spectroscopy. We first determine the radial-velocity curve of the secondary star and then model the shape of the phase-resolved absorption line profiles using an X-ray binary model. The model computes the exact rotationally broadened phase-resolved spectrum and does not depend on assumptions about the rotation profile, limb-darkening coefficients and the effects of contamination from an accretion disk. We determine the secondary star-to-neutron star binary mass ratio to be 0.1755+/-0.0025, which is an order of magnitude more accurate than previous estimates. We also constrain the inclination angle to be 32 (+8; -2) degrees, Combining these values with the results of the radial velocity study gives a neutron star mass of 1.94 (+0.37; -0.85) Msun consistent with previous estimates. Finally, we perform the first Roche tomography reconstruction of the secondary star in an X-ray binary. The tomogram reveals surface inhomogeneities that are due to the presence of cool starspots. A large cool polar spot, similar to that seen in Doppler images of rapidly-rotating isolated stars is present on the Northern hemisphere of the K7 secondary star and we estimate that about 4 per cent of the total surface area of the donor star is covered with spots. This evidence for starspots supports the idea that magnetic braking plays an important role in the evolution of low-mass X-ray binaries.
We conducted the first long-term (60 days), multiwavelength (optical, ultraviolet, and X-ray) simultaneous monitoring of Cen X-4 with daily Swift observations, with the goal of understanding variability in the low mass X-ray binary Cen X-4 during qui escence. We found Cen X-4 to be highly variable in all energy bands on timescales from days to months, with the strongest quiescent variability a factor of 22 drop in the X-ray count rate in only 4 days. The X-ray, UV and optical (V band) emission are correlated on timescales down to less than 110 s. The shape of the correlation is a power law with index gamma about 0.2-0.6. The X-ray spectrum is well fitted by a hydrogen NS atmosphere (kT=59-80 eV) and a power law (with spectral index Gamma=1.4-2.0), with the spectral shape remaining constant as the flux varies. Both components vary in tandem, with each responsible for about 50% of the total X-ray flux, implying that they are physically linked. We conclude that the X-rays are likely generated by matter accreting down to the NS surface. Moreover, based on the short timescale of the correlation, we also unambiguously demonstrate that the UV emission can not be due to either thermal emission from the stream impact point, or a standard optically thick, geometrically thin disc. The spectral energy distribution shows a small UV emitting region, too hot to arise from the accretion disk, that we identified as a hot spot on the companion star. Therefore, the UV emission is most likely produced by reprocessing from the companion star, indeed the vertical size of the disc is small and can only reprocess a marginal fraction of the X-ray emission. We also found the accretion disc in quiescence to likely be UV faint, with a minimal contribution to the whole UV flux.
We analyze the ASCA spectrum of the Cen X-3 X-ray binary system in eclipse using atomic models appropriate to recombination-dominated level population kinetics in an overionized plasma. In order to estimate the wind characteristics, we first fit the eclipse spectrum to a single-zone photoionized plasma model. We then fit spectra from a range of orbital phases using global models of photoionized winds from the companion star and the accretion disk that account for the continuous distribution of density and ionization state. We find that the spectrum can be reproduced by a density distribution of the form derived by Castor, Abbot, & Klein (1975) for radiation-driven winds with with the value of the mass-loss rate divided by the terminal velocity consistent with values for isolated stars of the same stellar type. This is surprising because the neutron star is very luminous (~10^38 erg/s) and the X-rays from the neutron star should ionize the wind and destroy the ions that provide the opacity for the radiation-driven wind. Using the same functional form for the density profile, we also fit the spectrum to a spherically symmetric wind centered on the neutron star, a configuration chosen to represent a disk wind. We argue that the relatively modest orbital variation of the discrete spectrum rules out a disk wind hypothesis.
Using two Chandra observations we have derived estimates of the dust distribution and distance to the eclipsing high mass X-ray binary (HMXB) Cen X-3 using the energy-resolved dust-scattered X-ray halo. By comparing the observed X-ray halos in 200 eV bands from 2-5 keV to the halo profiles predicted by the Weingartner & Draine interstellar grain model, we find that the vast majority (about 70%) of the dust along the line of sight to the system is located within about 300 pc of the Sun, although the halo measurements are insensitive to dust very close to the source. One of the Chandra observations occurred during an egress from eclipse as the pulsar emerged from behind the mass-donating primary. By comparing model halo light curves during this transition to the halo measurements, a source distance of 5.7 +/- 1.5 kpc (68% confidence level) is estimated, although we find this result depends on the distribution of dust on very small scales. Nevertheless, this value is marginally inconsistent with the commonly accepted distance to Cen X-3 of 8 kpc. We also find that the energy scaling of the scattering optical depth predicted by the Weingartner & Draine interstellar grain model does not accurately represent the results determined by X-ray halo studies of Cen X-3. Relative to the model, there appears to be less scattering at low energies or more scattering at high energies in Cen X-3.
328 - V. Beckmann 2011
The radio galaxy Cen A has been detected all the way up to the TeV energy range. This raises the question about the dominant emission mechanisms in the high-energy domain. Spectral analysis allows us to put constraints on the possible emission proces ses. Here we study the hard X-ray emission as measured by INTEGRAL in the 3-1000 keV energy range, in order to distinguish between a thermal and non-thermal inverse Compton process. The hard X-ray spectrum of Cen A shows a significant cut-off at energies Ec = 434 (+106 -73) keV with an underlying power law of photon index 1.73 +- 0.02. A more physical model of thermal Comptonisation (compPS) gives a plasma temperature of kT = 206+-62 keV within the optically thin corona with Compton parameter y = 0.42 (+0.09 -0.06). The reflection component is significant at the 1.9 sigma level with R = 0.12 (+0.09 -0.10), and a reflection strength R>0.3 can be excluded on a 3 sigma level. Time resolved spectral studies show that the flux, absorption, and spectral slope varied in the range f(3-30 keV) = (1.2 - 9.2)e-10 erg/cm**2/s, NH = (7 - 16)e22 1/cm**2, and photon index 1.75 - 1.87. Extending the cut-off power law or the Comptonisation model to the gamma-ray range shows that they cannot account for the high-energy emission. On the other hand, also a broken or curved power law model can represent the data, therefore a non-thermal origin of the X-ray to GeV emission cannot be ruled out. The analysis of the SPI data provides no sign of significant emission from the radio lobes and gives a 3 sigma upper limit of f(40-1000 keV) < 0.0011 ph/cm**2/s. While gamma-rays, as detected by CGRO and Fermi, are caused by non-thermal (jet) processes, the main process in the hard X-ray emission of Cen A is still not unambiguously determined, being either dominated by thermal inverse Compton emission, or by non-thermal emission from the base of the jet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا