ترغب بنشر مسار تعليمي؟ اضغط هنا

Time-resolved optical photometry of the ultra-compact binary 4U0614+091

188   0   0.0 ( 0 )
 نشر من قبل Tariq Shahbaz
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف T. Shahbaz




اسأل ChatGPT حول البحث

We present a detailed optical study of the ultra-compact X-ray binary 4U0614+091. We have used 63 hrs of time-resolved optical photometry taken with three different telescopes (IAC80, NOT and SPM) to search for optical modulations. The power spectra of each dataset reveals sinusoidal modulations with different periods, which are not always present. The strongest modulation has a period of 51.3 mins, a semi-amplitude of 4.6 mmags, and is present in the IAC80 data. The SPM and NOT data show periods of 42 mins and 64 mins respectively, but with much weaker amplitudes, 2.6 mags and 1.3 mmags respectively. These modulations arise from either X-ray irradiation of the inner face of the secondary star and/or a superhump modulation from the accretion disc, or quasi-periodic modulations in the accretion disc. It is unclear whether these periods/quasi-periodic modulations are related to the orbital period, however, the strongest period of 51.3 mins is close to earlier tentative orbital periods. Further observations taken over a long base-line are encouraged.



قيم البحث

اقرأ أيضاً

91 - S. Migliari 2009
We observed the neutron star (NS) ultra-compact X-ray binary 4U0614+091 quasi-simultaneously in the radio band (VLA), mid-IR/IR (Spitzer/MIPS and IRAC), near-IR/optical (SMARTS), optical-UV (Swift/UVOT), soft and hard X-rays (Swift/XRT and RXTE). The source was steadily in its `hard state. We detected the source in the whole range, for the first time in the radio band at 4.86 and 8.46 GHz and in the mid-IR at 24 um, up to 100 keV. The optically thick synchrotron spectrum of the jet is consistent with being flat from the radio to the mid-IR band. The flat jet spectrum breaks in the range (1-4)x10^(13) Hz to an optically-thin power-law synchrotron spectrum with spectral index ~-0.5. These observations allow us to estimate a lower limit on the jet radiative power of ~3x10^(32) erg/s and a total jet power Lj~10^(34) u_(0.05)^(-1) Ec^(0.53) erg/s (where Ec is the high-energy cutoff of the synchrotron spectrum in eV and u_(0.05) is the radiative efficiency in units of 0.05). The contemporaneous detection of the optically thin part of the compact jet and the X-ray tail above 30 keV allows us to assess the contribution of the jet to the hard X-ray tail by synchrotron self-Compton (SSC) processes. We conclude that, for realistic jet size, boosting, viewing angle and energy partition, the SSC emission alone, from the post-shock, accelerated, non-thermal population in the jet, is not a viable mechanism to explain the observed hard X-ray tail of the neutron star 4U0614+091.
A 321.5 s modulation was discovered in 1999 in the X-ray light curve of HM Cnc. In 2001 and 2002, optical photometric and spectroscopic observations revealed that HM Cnc is a very blue object with no intrinsic absorptions but broad (FWHM 1500 km s^-1 ) low equivalent width emission lines (EW 1-6A), which were first identified with the HeII Pickering series. The combination of X-ray and optical observations pictures HM Cnc as a double degenerate binary hosting two white dwarfs, and possibly being the shortest orbital period binary discovered so far. The present work is aimed at studying the orbital motion of the two components by following the variations of the shape, centroid and intensity of the emission lines through the orbit. In February 2007, we carried out the first phase resolved optical spectroscopic study with the VLT/FORS2 in the High Time Resolution (HIT) mode, yielding five phase bins in the 321 s modulation. Despite the low SNR, the data show that the intensity of the three most prominent emission lines, already detected in 2001, varies with the phase. These lines are detected at phases 0.2-0.6 where the optical emission peaks, and marginally detected or not detected at all elsewhere. Moreover, the FWHM of the emission lines in the phase resolved spectra is smaller, by almost a factor 2, than that in the the phase-averaged 2001 spectrum. Our results are consistent with both the pulsed optical component and emission lines originating in the same region which we identify with the irradiated surface of the secondary. Moreover, regardless of the origin of the un-pulsed optical continuum, we note that the EWs of the emission lines might be up to -15 / -25A, larger than thought before; these values are more similar to those detected in cataclysmic variables. All the findings further confirm that the 321s modulation observed in HM Cnc is the orbital period of the system, the shortest known to date.
We observed the ultra-compact binary candidate 4U 0614+091 for a total of 200 ksec with the high-energy transmission gratings onboard the chandra X-ray Observatory. The source is found at various intensity levels with spectral variations present. X-r ay luminosities vary between 2.0$times10^{36}$ ergsec and 3.5$times10^{36}$ ergsec. Continuum variations are present at all times and spectra can be well fit with a powerlaw component, a high kT blackbody component, and a broad line component near oxygen. The spectra require adjustments to the Ne K edge and in some occasions also to the Mg K edge. The Ne K edge appears variable in terms of optical depths and morphology. The edge reveals average blue- and red-shifted values implying Doppler velocities of the order of 3500 kms. The data show that Ne K exhibits excess column densities of up to several 10$^{18}$ cm$^{-2}$. The variability proves that the excess is intrinsic to the source. The correponding disk velocities also imply an outer disk radius of the order of $< 10^9$ cm consistent with an ultra-compact binary nature. We also detect a prominent soft emission line complex near the oviii L$alpha$ position which appears extremely broad and relativistic effects from near the innermost disk have to be included. Gravitationally broadened line fits also provide nearly edge-on angles of inclination between 86 and 89$^{circ}$. The emissions appear consistent with an ionized disk with ionization parameters of the order of 10$^4$ at radii of a few 10$^7$ cm. The line wavelengths with respect to oviiia are found variably blue-shifted indicating more complex inner disk dynamics.
We present time-resolved photometry of two cataclysmic variables whose CCD photometric observations were obtained with the 1m telescope at the South African Astronomical Observatory in October 2002 and August 2003 and with the 1m telescope at Hoher L ist in Germany. Concerning MCT 2347-3144 we detect for the first time a period of 6.65h. For V1193 Ori the 3.96 h periodicity has for the first time been confirmed through time-resolved photometry.
Resolved UBVRI photometry of RW Aur binary was performed on November 13/14, 2014 during the deep dimming of RW Aur with a newly installed 2.5 meter telescope of the Caucasus observatory of Lomonosov Moscow State University at the mount Shatzhatmaz. A t that moment RW Aur A was $simeq 3^m$ fainter than in November 1994 in all spectral bands. We explain the current RW Aur A dimming as a result of eclipse of the star by dust particles with size $>1 mu m.$ We found that RW Aur B is also a variable star: it was brighter than 20 years ago at $0.7^m$ in each of UBVRI band (gray brightening).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا