ترغب بنشر مسار تعليمي؟ اضغط هنا

54 - Takuma Matsumoto 2020
Identifying the heating mechanisms of the solar corona and the driving mechanisms of solar wind are key challenges in understanding solar physics. A full three-dimensional compressible magnetohydrodynamic (MHD) simulation was conducted to distinguish between the heating mechanisms in the fast solar wind above the open field region. Our simulation describes the evolution of the Alfv{e}nic waves, which includes the compressible effects from the photosphere to the heliospheric distance $s$ of 27 solar radii ($R_odot$). The hot corona and fast solar wind were reproduced simultaneously due to the dissipation of the Alfv{e}n waves. The inclusion of the transition region and lower atmosphere enabled us to derive the solar mass loss rate for the first time by performing a full three-dimensional compressible MHD simulation. The Alfv{e}n turbulence was determined to be the dominant heating mechanism in the solar wind acceleration region ($s>1.3 R_odot$), as suggested by previous solar wind models. In addition, shock formation and phase mixing are important below the lower transition region ($s<1.03R_odot$) as well.
We construct a microscopic optical potential including breakup effects for elastic scattering of weakly-binding projectiles within the Glauber model, in which a nucleon-nucleus potential is derived by the $g$-matrix folding model. The derived microsc opic optical potential is referred to as the eikonal potential. For $d$ scattering, the calculation with the eikonal potential reasonably reproduces the result with an exact calculation estimated by the continuum-discretized coupled-channels method. As the properties of the eikonal potential, the inaccuracy of the eikonal approximation used in the Glauber model is partially excluded. We also analyse the $^6$He scattering from $^{12}$C with the eikonal potential and show its applicability to the scattering with many-body projectiles.
194 - Takuma Matsumoto 2017
A full 3-dimensional compressible magnetohydrodynamic (MHD) simulation is conducted to investigate the thermal responses of a coronal loop to the dynamic dissipation processes of MHD waves. When the foot points of the loop are randomly and continuous ly forced, the MHD waves become excited and propagate upward. Then, a 1-MK temperature corona is produced naturally as the wave energy dissipates. The excited wave packets become non-linear just above the magnetic canopy, and the wave energy cascades into smaller spatial scales. Moreover, collisions between counter-propagating Alfv{e}n wave packets increase the heating rate, resulting in impulsive temperature increases. Our model demonstrates that the heating events in the wave-heated loops can be nanoflare-like in the sense that they are spatially localized and temporally intermittent.
A dipole resonance of 11Li is newly found by a 9Li + n + n three-body model analysis with the complex-scaling method. The resonance can be interpreted as a bound state in the 10Li + n system, that is, a Feshbach resonance in the 9Li + n + n system. A s a characteristic feature of the Feshbach resonance of 11Li, the 10Li + n threshold is open above the 9Li + n + n one, which reflects a distinctive property of the Borromean system. A microscopic four-body reaction calculation for the 11Li(p,p) reaction at 6 MeV/nucleon is performed by taking into account the resonance and nonresonant continuum states of the three-body system. The angular distribution of the elastic and inelastic scattering as well as the breakup energy spectrum recently observed are reproduced well.
87 - Takuma Matsumoto 2016
2.5-dimensional magnetohydrodynamic (MHD) simulations are performed with high spatial resolution in order to distinguish between competing models of the coronal heating problem. A single coronal loop powered by Alfv{e}n waves excited in the photosphe re is the target of the present study. The coronal structure is reproduced in our simulations as a natural consequence of the transportation and dissipation of Alfv{e}n waves. Further, the coronal structure is maintained as the spatial resolution is changed from 25 to 3 km, although the temperature at the loop top increases with the spatial resolution. The heating mechanisms change gradually across the magnetic canopy at a height of 4 Mm. Below the magnetic canopy, both the shock and the MHD turbulence are dominant heating processes. Above the magnetic canopy, the shock heating rate reduces to less than 10 % of the total heating rate while the MHD turbulence provides significant energy to balance the radiative cooling and thermal conduction loss or gain. The importance of compressibility shown in the present study would significantly impact on the prospects of successful MHD turbulence theory in the solar chromosphere.
We have performed a 2.5 dimensional magnetohydrodynamic simulation that resolves the propagation and dissipation of Alfven waves in the solar atmosphere. Alfvenic fluctuations are introduced on the bottom boundary of the extremely large simulation bo x that ranges from the photosphere to far above the solar wind acceleration region. Our model is ab initio in the sense that no corona and no wind are assumed initially.The numerical experiment reveals the quasi-steady solution that has the transition from the cool to the hot atmosphere and the emergence of the high speed wind. The global structure of the resulting hot wind solution fairly well agree with the coronal and the solar wind structure inferred from observations. The purpose of this study is to complement the previous paper by Matsumoto & Suzuki (2012) and describe the more detailed results and the analysis method. These results include the dynamics of the transition region and the more precisely measured heating rate in the atmosphere. Particularly, the spatial distribution of the heating rate helps us to interpret the actual heating mechanisms in the numerical simulation.Our estimation method of heating rate turned out to be a good measure for dissipation of Alfven waves and low beta fast waves.
This is a review on recent developments of the continuum discretized coupled-channels method (CDCC) and its applications to nuclear physics, cosmology and astrophysics, and nuclear engineering. The theoretical foundation of CDCC is shown, and a micro scopic reaction theory for nucleus-nucleus scattering is constructed as an underlying theory of CDCC. CDCC is then extended to treat Coulomb breakup and four-body breakup. We also propose a new theory that makes CDCC applicable to inclusive reactions
The solar wind emanates from the hot and tenuous solar corona. Earlier studies using 1.5 dimensional simulations show that Alfv{e}n waves generated in the photosphere play an important role in coronal heating through the process of non-linear mode co nversion. In order to understand the physics of coronal heating and solar wind acceleration together, it is important to consider the regions from photosphere to interplanetary space as a single system. We performed 2.5 dimensional, self-consistent magnetohydrodynamic simulations, covering from the photosphere to the interplanetary space for the first time. We carefully set up the grid points with spherical coordinate to treat the Alfv{e}n waves in the atmosphere with huge density contrast, and successfully simulate the solar wind streaming out from the hot solar corona as a result of the surface convective motion. The footpoint motion excites Alfv{e}n waves along an open magnetic flux tube, and these waves traveling upwards in the non-uniform medium undergo wave reflection, nonlinear mode conversion from Alfv{e}n mode to slow mode, and turbulent cascade. These processes leads to the dissipation of Alfv{e}n waves and acceleration of the solar wind. It is found that the shock heating by the dissipation of the slow mode wave plays a fundamental role in the coronal heating process whereas the turbulent cascade and shock heating drive the solar wind.
We investigate $^6$Li($n$, $n$)$^6$Li$^*$ $to$ $d$ + $alpha$ reactions by using the continuum-discretized coupled-channels method with the complex Jeukenne-Lejeune-Mahaux effective nucleon-nucleon interaction. In this study, the $^6$Li nucleus is des cribed as a $d$ + $alpha$ cluster model. The calculated elastic cross sections for incident energies between 7.47 and 24.0 MeV are good agreement with experimental data. Furthermore, we show the neutron spectra to $^6$Li breakup states measured at selected angular points and incident energies can be also reproduced systematically.
We have derived the temporal power spectra of the horizontal velocity of the solar photosphere. The data sets for 14 quiet regions observed with the Gband filter of Hinode/SOT are analyzed to measure the temporal fluctuation of the horizontal velocit y by using the local correlation tracking (LCT) method. Among the high resolution (~0.2) and seeing-free data sets of Hinode/SOT, we selected the observations whose duration is longer than 70 minutes and cadence is about 30 s. The so-called k-{omega} diagrams of the photospheric horizontal velocity are derived for the first time to investigate the temporal evolution of convection. The power spectra derived from k-omega diagrams typically have a double power law shape bent over at a frequency of 4.7 mHz. The power law index in the high frequency range is -2.4 while the power law index in the low frequency range is -0.6. The root mean square of the horizontal speed is about 1.1 km/s when we use a tracer size of 0.4 in LCT method. Autocorrelation functions of intensity fluctuation, horizontal velocity, and its spatial derivatives are also derived in order to measure the correlation time of the stochastic photospheric motion. Since one of possible energy sources of the coronal heating is the photospheric convection, the power spectra derived in the present study will be of high value to quantitatively justify various coronal heating models.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا