ﻻ يوجد ملخص باللغة العربية
Identifying the heating mechanisms of the solar corona and the driving mechanisms of solar wind are key challenges in understanding solar physics. A full three-dimensional compressible magnetohydrodynamic (MHD) simulation was conducted to distinguish between the heating mechanisms in the fast solar wind above the open field region. Our simulation describes the evolution of the Alfv{e}nic waves, which includes the compressible effects from the photosphere to the heliospheric distance $s$ of 27 solar radii ($R_odot$). The hot corona and fast solar wind were reproduced simultaneously due to the dissipation of the Alfv{e}n waves. The inclusion of the transition region and lower atmosphere enabled us to derive the solar mass loss rate for the first time by performing a full three-dimensional compressible MHD simulation. The Alfv{e}n turbulence was determined to be the dominant heating mechanism in the solar wind acceleration region ($s>1.3 R_odot$), as suggested by previous solar wind models. In addition, shock formation and phase mixing are important below the lower transition region ($s<1.03R_odot$) as well.
We report analysis of sub-Alfvenic magnetohydrodynamic (MHD) perturbations in the low-b{eta} radial-field solar wind using the Parker Solar Probe spacecraft data from 31 October to 12 November 2018. We calculate wave vectors using the singular value
White-light images from Heliospheric Imager-1 (HI1) onboard the Solar Terrestrial Relations Observatory (STEREO) provide 2-dimensional (2D) global views of solar wind transients traveling in the inner heliosphere from two perspectives. How to retriev
Fast (>700 km/s) and slow (~400 km/s) winds stream from the Sun, permeate the heliosphere and influence the near-Earth environment. While the fast wind is known to emanate primarily from polar coronal holes, the source of the slow wind remains unknow
In this work, we simulate the evolution of the solar wind along its main sequence lifetime and compute its thermal radio emission. To study the evolution of the solar wind, we use a sample of solar mass stars at different ages. All these stars have o
We investigated the dynamic evolution of a 3-dimensional (3D) flux rope eruption and magnetic reconnection process in a solar flare, by simply extending 2-dimensional (2D) resistive magnetohydrodynamic simulation model of solar flares with low $beta$