ترغب بنشر مسار تعليمي؟ اضغط هنا

Connecting the Sun and the Solar Wind: The First 2.5 Dimensional Self-consistent MHD Simulation under the Alfven Wave Scenario

80   0   0.0 ( 0 )
 نشر من قبل Takuma Matsumoto Mr
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The solar wind emanates from the hot and tenuous solar corona. Earlier studies using 1.5 dimensional simulations show that Alfv{e}n waves generated in the photosphere play an important role in coronal heating through the process of non-linear mode conversion. In order to understand the physics of coronal heating and solar wind acceleration together, it is important to consider the regions from photosphere to interplanetary space as a single system. We performed 2.5 dimensional, self-consistent magnetohydrodynamic simulations, covering from the photosphere to the interplanetary space for the first time. We carefully set up the grid points with spherical coordinate to treat the Alfv{e}n waves in the atmosphere with huge density contrast, and successfully simulate the solar wind streaming out from the hot solar corona as a result of the surface convective motion. The footpoint motion excites Alfv{e}n waves along an open magnetic flux tube, and these waves traveling upwards in the non-uniform medium undergo wave reflection, nonlinear mode conversion from Alfv{e}n mode to slow mode, and turbulent cascade. These processes leads to the dissipation of Alfv{e}n waves and acceleration of the solar wind. It is found that the shock heating by the dissipation of the slow mode wave plays a fundamental role in the coronal heating process whereas the turbulent cascade and shock heating drive the solar wind.



قيم البحث

اقرأ أيضاً

We have performed a 2.5 dimensional magnetohydrodynamic simulation that resolves the propagation and dissipation of Alfven waves in the solar atmosphere. Alfvenic fluctuations are introduced on the bottom boundary of the extremely large simulation bo x that ranges from the photosphere to far above the solar wind acceleration region. Our model is ab initio in the sense that no corona and no wind are assumed initially.The numerical experiment reveals the quasi-steady solution that has the transition from the cool to the hot atmosphere and the emergence of the high speed wind. The global structure of the resulting hot wind solution fairly well agree with the coronal and the solar wind structure inferred from observations. The purpose of this study is to complement the previous paper by Matsumoto & Suzuki (2012) and describe the more detailed results and the analysis method. These results include the dynamics of the transition region and the more precisely measured heating rate in the atmosphere. Particularly, the spatial distribution of the heating rate helps us to interpret the actual heating mechanisms in the numerical simulation.Our estimation method of heating rate turned out to be a good measure for dissipation of Alfven waves and low beta fast waves.
During Parker Solar Probes first orbit, the solar wind plasma has been observed in situ closer than ever before, the perihelion on November 6th 2018 revealing a flow that is constantly permeated by large amplitude Alfvenic fluctuations. These include radial magnetic field reversals, or switchbacks, that seem to be a persistent feature of the young solar wind. The measurements also reveal a very strong, unexpected, azimuthal velocity component. In this work, we numerically model the solar corona during this first encounter, solving the MHD equations and accounting for Alfven wave transport and dissipation. We find that the large scale plasma parameters are well reproduced, allowing the computation of the solar wind sources at Probe with confidence. We try to understand the dynamical nature of the solar wind to explain both the amplitude of the observed radial magnetic field and of the azimuthal velocities.
The fourth orbit of Parker Solar Probe (PSP) reached heliocentric distances down to 27.9 Rs, allowing solar wind turbulence and acceleration mechanisms to be studied in situ closer to the Sun than previously possible. The turbulence properties were f ound to be significantly different in the inbound and outbound portions of PSPs fourth solar encounter, likely due to the proximity to the heliospheric current sheet (HCS) in the outbound period. Near the HCS, in the streamer belt wind, the turbulence was found to have lower amplitudes, higher magnetic compressibility, a steeper magnetic field spectrum (with spectral index close to -5/3 rather than -3/2), a lower Alfvenicity, and a 1/f break at much lower frequencies. These are also features of slow wind at 1 au, suggesting the near-Sun streamer belt wind to be the prototypical slow solar wind. The transition in properties occurs at a predicted angular distance of ~4{deg} from the HCS, suggesting ~8{deg} as the full-width of the streamer belt wind at these distances. While the majority of the Alfvenic turbulence energy fluxes measured by PSP are consistent with those required for reflection-driven turbulence models of solar wind acceleration, the fluxes in the streamer belt are significantly lower than the model predictions, suggesting that additional mechanisms are necessary to explain the acceleration of the streamer belt solar wind.
Magneto-hydrodynamic (MHD) Alfven waves have been a focus of laboratory plasma physics and astrophysics for over half a century. Their unique nature makes them ideal energy transporters, and while the solar atmosphere provides preferential conditions for their existence, direct detection has proved difficult as a result of their evolving and dynamic observational signatures. The viability of Alfven waves as a heating mechanism relies upon the efficient dissipation and thermalization of the wave energy, with direct evidence remaining elusive until now. Here we provide the first observational evidence of Alfven waves heating chromospheric plasma in a sunspot umbra through the formation of shock fronts. The magnetic field configuration of the shock environment, alongside the tangential velocity signatures, distinguish them from conventional umbral flashes. Observed local temperature enhancements of 5% are consistent with the dissipation of mode-converted Alfven waves driven by upwardly propagating magneto-acoustic oscillations, providing an unprecedented insight into the behaviour of Alfven waves in the solar atmosphere and beyond.
A growing body of evidence suggests that the solar wind is powered to a large extent by an Alfven-wave (AW) energy flux. AWs energize the solar wind via two mechanisms: heating and work. We use high-resolution direct numerical simulations of reflecti on-driven AW turbulence (RDAWT) in a fast-solar-wind stream emanating from a coronal hole to investigate both mechanisms. In particular, we compute the fraction of the AW power at the coronal base ($P_{rm AWb}$) that is transferred to solar-wind particles via heating between the coronal base and heliocentric distance $r$, which we denote $chi_{rm H}(r)$, and the fraction that is transferred via work, which we denote $chi_{rm W}(r)$. We find that $chi_{rm W}(r_{rm A})$ ranges from 0.15 to 0.3, where $r_{rm A}$ is the Alfven critical point. This value is small compared to~one because the Alfven speed $v_{rm A} $ exceeds the outflow velocity $U$ at $r<r_{rm A}$, so the AWs race through the plasma without doing much work. At $r>r_{rm A}$, where $v_{rm A} < U$, the AWs are in an approximate sense stuck to the plasma, which helps them do pressure work as the plasma expands. However, much of the AW power has dissipated by the time the AWs reach $r=r_{rm A}$, so the total rate at which AWs do work on the plasma at $r>r_{rm A}$ is a modest fraction of $P_{rm AWb}$. We find that heating is more effective than work at $r<r_{rm A}$, with $chi_{rm H}(r_{rm A})$ ranging from 0.5 to 0.7. The reason that $chi_{rm H} geq 0.5$ in our simulations is that an appreciable fraction of the local AW power dissipates within each Alfven-speed scale height in RDAWT, and there are a few Alfven-speed scale heights between the coronal base and $r_{rm A}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا